Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Acoust Soc Am ; 155(4): 2561-2576, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597732

RESUMEN

A study is presented of the thermal-mechanical noise and response to sound of microphones that are designed to be driven by the viscous forces in air rather than by sound pressure. Virtually all existing microphone designs are intended to respond to sound pressure. The structures examined here consist of thin, micro-scale, cantilever beams. The viscous forces that drive the beams are proportional to the relative velocity between the beams and fluid medium. The beams' movement in response to sound is similar to that of the air in a plane acoustic wave. The thermal-mechanical noise of these beams is found to be a very weak function of their width and length; the size of the sensing structure does not appear to significantly affect the performance. This differs from the well-known importance of the size of a pressure-sensing microphone in determining the pressure-referred noise floor. Creating microphones that sense fluid motion rather than pressure could enable a significant reduction in the size of the sensing element. Calculated results are revealed to be in excellent agreement with the measured pressure-referred thermal noise.

2.
Apoptosis ; 28(7-8): 1060-1075, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060507

RESUMEN

The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.


Asunto(s)
Neoplasias Pulmonares , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Apoptosis , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Quinasa 9 Dependiente de la Ciclina/genética
3.
Nanotechnology ; 34(40)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37462320

RESUMEN

The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%-60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications.

4.
Nanotechnology ; 30(2): 025706, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30387442

RESUMEN

Boron nitride nanotubes (BNNTs) are a unique class of light and strong tubular nanostructure and are highly promising as reinforcing additives in ceramic materials. However, the mechanical strength of BNNT-ceramic interfaces remains largely unexplored. Here we report the first direct measurement of the interfacial strength by pulling out individual BNNTs from silica (silicon dioxide) matrices using in situ electron microscopy techniques. Our nanomechanical measurements show that the average interfacial shear stress reaches about 34.7 MPa, while density functional theory calculations reveal strong bonded interactions between BN and silica lattices with a binding energy of -6.98 eV nm-2. Despite this strong BNNT-silica binding, nanotube pull-out remains the dominant failure mode without noticeable silica matrix residues on the pulled-out tube surface. The fracture toughness of BNNT-silica ceramic matrix nanocomposite is evaluated based on the measured interfacial strength property, and substantial fracture toughness enhancements are demonstrated at small filler concentrations.

5.
Biochim Biophys Acta ; 1848(3): 859-68, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534714

RESUMEN

The migration of mesenchymal stem cells (MSCs) plays a key role in tumor-targeted delivery vehicles and tumor-related stroma formation. However, there so far has been no report on the distribution of cell surface molecules during the VEGF-induced migration of MSCs. Here, we have utilized near-field scanning optical microscopy (NSOM) combined with fluorescent quantum dot (QD)-based nano-technology to capture the functional relationship between CD44 and CD29 adhesion molecules on MSCs and the effect of their spatial rearrangements. Before VEGF-induced migration of MSCs, both CD44 and CD29 formed 200-220 nm nano-domains respectively, with little co-localization between the two types of domains. Surprisingly, the size of the CD44 nano-domain rapidly increased in size to 295 nm and apparently larger aggregates were formed following MSC treatment with VEGF for 10 min, while the area of co-localization increased to 0.327 µm2. Compared with CD44, CD29 was activated obviously later, for the fact that CD29 aggregation didn't appear until 30 min after VEGF treatment. Consistently, its co-localization area increased to 0.917 µm2. The CD44 and CD29 nano-domains further aggregated into larger nano-domains or even formed micro-domains on the membrane of activated MSCs. The aggregation and co-localization of these molecules promoted FAK formation and cytoskeleton rearrangement. All of the above changes induced by VEGF contributed to MSC migration. Taken together, our data of NSOM-based dual color fluorescent imaging demonstrated for the first time that CD44, together with CD29, involved in VEGF-induced migration of MSCs through the interaction between CD44 and its co-receptor of VEGFR-2.


Asunto(s)
Movimiento Celular , Células Madre Mesenquimatosas/citología , Microscopía de Sonda de Barrido/métodos , Puntos Cuánticos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Fluorescencia , Adhesiones Focales/efectos de los fármacos , Humanos , Receptores de Hialuranos/metabolismo , Integrina beta1/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Small ; 9(19): 3345-51, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23606544

RESUMEN

Understanding the interfacial stress transfer between carbon nanotubes (CNTs) and polymer matrices is of great importance to the development of CNT-reinforced polymer nanocomposites. In this paper, an experimental study is presented of the interfacial strength between individual double-walled CNTs and poly(methyl methacrylate) (PMMA) using an in situ nanomechanical single-tube pull-out testing scheme inside a high-resolution electron microscope. By pulling out individual tubes with different embedded lengths, this work reveals the shear lag effect on the nanotube-polymer interface and demonstrates that the effective interfacial load transfer occurs only within a certain embedded length. These results show that the CNT-PMMA interface possesses an interfacial fracture energy within 0.054-0.80 J/m(2) and a maximum interfacial strength within 85-372 MPa. This work is useful to better understand the local stress transfer on nanotube-polymer interfaces.

7.
Nanotechnology ; 24(50): 505719, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24285263

RESUMEN

The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip-tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip-tube collision process and the roles of the scribing velocity and the frictional interaction on the tip-tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26-4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1-15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures.

8.
Small ; 8(1): 116-21, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22081558

RESUMEN

The radial mechanical properties of single-walled boron nitride nanotubes (SW-BNNTs) are investigated by atomic force microscopy. Nanomechanical measurements reveal the radial deformation of individual SW-BNNTs in both elastic and plastic regimes. The measured effective radial elastic moduli of SW-BNNTs are found to follow a decreasing trend with an increase in tube diameter, ranging from 40.78 to 1.85 GPa for tube diameters of 0.58 to 2.38 nm. The results show that SW-BNNTs have relatively lower effective radial elastic moduli than single-walled carbon nanotubes (SWCNTs). The axially strong, but radially supple characteristics suggest that SW-BNNTs may be superior to SWCNTs as reinforcing additives for nanocomposite applications.


Asunto(s)
Compuestos de Boro/química , Nanotubos/química , Módulo de Elasticidad , Fenómenos Mecánicos , Microscopía de Fuerza Atómica
9.
Nanotechnology ; 23(9): 095703, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22322464

RESUMEN

We investigated the radial mechanical properties of multi-walled boron nitride nanotubes (MW-BNNTs) using atomic force microscopy. The employed MW-BNNTs were synthesized using pressurized vapor/condenser (PVC) methods and were dispersed in aqueous solution using ultrasonication methods with the aid of ionic surfactants. Our nanomechanical measurements reveal the elastic deformational behaviors of individual BNNTs with two to four tube walls in their transverse directions. Their effective radial elastic moduli were obtained through interpreting their measured radial deformation profiles using Hertzian contact mechanics models. Our results capture the dependences of the effective radial moduli of MW-BNNTs on both the tube outer diameter and the number of tube layers. The effective radial moduli of double-walled BNNTs are found to be several-fold higher than those of single-walled BNNTs within the same diameter range. Our work contributes directly to a complete understanding of the fundamental structural and mechanical properties of BNNTs and the pursuits of their novel structural and electronics applications.


Asunto(s)
Compuestos de Boro/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Anisotropía , Módulo de Elasticidad , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
10.
Biomater Sci ; 10(6): 1498-1514, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35170591

RESUMEN

Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) has been shown to be highly efficient for cancer treatment when combined with the potent cyclin-dependent kinase (CDK) inhibitor dinaciclib (SCH727965, Dina). However, only topical administration was previously tested for cancer treatment, leaving unknown the efficacy of systemic therapy by EV-T and Dina. In this study we hypothesize that the systemic application of EV-T and Dina can be performed through EV-mediated co-delivery of TRAIL and Dina. Dina was first post-loaded into EV-Ts by sonication to prepare EV-mediated co-delivery of TRAIL and Dina, designated Dina@EV-T. Then Dina@EV-Ts were shown to be stable, readily endocytosed into cancer cells, and highly effective at inducing intensive apoptosis in resistant cancer lines but not in normal cells. Moreover, systemically infused Dina@EV-Ts showed evident tumor tropism suggesting their good potential for tumour-targeted delivery of therapeutics. Importantly, the systemic therapy with Dina@EV-Ts showed the best efficacy in vivo when compared with other treatments. The augmented therapeutic efficacy appeared to be associated with the concomitant suppression of prosurvival CDK1 and anti-apoptotic proteins including CDK9, cFLIP, MCL-1, BCL-2 and Survivin by Dina@EV-T treatment. Additionally, there were no adverse side effects observed for the systemic Dina@EV-T therapy. In conclusion, our data suggest that the co-delivery of TRAIL and Dina by EVs potentially constitutes a novel tumour-targeted therapy, which is highly effective and safe for the treatment of refractory tumors.


Asunto(s)
Vesículas Extracelulares , Indolizinas , Apoptosis , Línea Celular Tumoral , Óxidos N-Cíclicos , Vesículas Extracelulares/metabolismo , Indolizinas/farmacología , Compuestos de Piridinio , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
11.
ChemMedChem ; 17(4): e202100659, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34881517

RESUMEN

A series of mitochondria-targeted triphenylphosphonium conjugated C-3 modified betulin were synthesized and evaluated against tumor cells. As a result, a new derivative 13 i, the conjugate of 3-O-(3'-acetylphenylacetate)-betulin with triphenylphosphonium, was identified as the one with the best anti-tumor effect. Conjugate 13 i significantly inhibited HCT116 cells with IC50 at 0.66 µM. While betulin, C-3 modified betulin, and the triphenylphosphonium moiety showed no inhibition of HCT116 cell proliferation at 20 µM. More importantly, 13 i exhibited a more cytotoxic effect against the tumor cell HCT116 than normal cell NCM460. Mode of action studies demonstrated that 13 i induced the G2/M phase cell cycle arrest and apoptosis in HCT116 cells through the mitochondrial pathway. Structure-activity relationship analysis revealed that integration of triphenylphosphonium moiety into the C-28 of betulin can greatly improve cytotoxicity. Appropriate modification on C-3 of the conjugate would improve the selectivity.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/farmacología , Triterpenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mitocondrias/metabolismo , Estructura Molecular , Compuestos Organofosforados/química , Relación Estructura-Actividad , Triterpenos/química
12.
Acta Histochem ; 124(2): 151856, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35077998

RESUMEN

Neuroblastoma is a metastatic brain tumor particularly common in children. The cure rate is below 50% for patients of high-risk condition. Novel therapeutic agents and approaches are needed to improve the cure rate. Tumor necrosis factor-related and apoptosis-inducing ligand (TRAIL) is a promising proapoptotic factor that rapidly induces apoptosis preferentially in transformed and cancerous cells. Unfortunately, the common TRAIL resistance in cancers has hampered the clinical application of the ligand. Previously we prepared a novel TRAIL-armed ER derived nanosomal agent (ERN-T) that overcomes TRAIL resistance in some cancer lines when combined with a synthetic antagonist of inhibitors of apoptosis proteins (IAPs), AZD5582. However, how AZD5582 sensitizes cancer cells to ERN-T remains not well understood. In this study we continued to test the therapeutic efficacy of the combinatory therapy of ERN-T and AZD5582 on neuroblastoma, aiming to reveal the molecular mechanism underlying the synergism between AZD5582 and ERN-T. The obtained data revealed that ERN-Ts overcame TRAIL resistance and showed significant cytotoxicity on the resistant neuroblastoma line SH-SH5Y when combined with AZD5582 whilst sparing normal cells. The combination of low doses of ERN-Ts and AZD5582 induced intensive apoptosis in SH-SY5Y but not in normal skin fibroblasts (NSFs). Importantly we discovered that TRAIL sensitization in SH-SY5Y was associated with the concomitant downregulation of antiapoptotic factors cFLIP, MCL-1 and IAPs and upregulation of proapoptotic protein BAX and the death receptor 5 (DR5) by the cotreatment of ERN-T and AZD5582. In vivo study demonstrated that the combination of ERN-T and AZD5582 constituted a highly effective and safe therapy for subcutaneous SH-SY5Y xenograft neuroblastoma in nude mice. In conclusion, we identified that the concomitant regulation of both antiapoptotic and proapoptotic factors and DR5 is an essential molecular mechanism for overcoming TRAIL resistance in SH-SY5Y and the combination of ERN-T and AZD5582 potentially constitutes a novel therapeutic strategy, which is highly effective and safe for neuroblastoma.


Asunto(s)
Neuroblastoma , Ligando Inductor de Apoptosis Relacionado con TNF , Alquinos , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Oligopéptidos , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico
13.
J Mol Med (Berl) ; 100(4): 629-643, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247069

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive malignancy, and its effective treatment has been hampered by drug resistance. Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) was demonstrated to be superior to recombinant TRAIL (rTRAIL) for cancer treatment previously. And AZD5582, a potent antagonist of inhibitors of apoptosis proteins (IAPs) can potentiate apoptosis-based cancer therapies. However, the combination of EV-T and AZD5582 has never been examined for their possible apoptosis inducing synergism in cancers. In this study, we proposed and tested the combination of EV-T and AZD5582 as a potential novel therapy for effective treatment of HCC. Two HCC lines Huh7 and HepG2 that are both resistant to rTRAIL were examined. The results confirmed that AZD5582 and EV-T are synergistic for apoptosis induction in some cancer lines including Huh7 and HepG2 while sparing normal cells. More importantly, this study revealed that TRAIL sensitization by AZD5582 is mediated through the concomitant suppression of anti-apoptotic factors including cFLIP, MCL-1, and IAPs (XIAP, Survivin and cIAP-1). Particularly the downregulation of cFLIP and IAP's appeared to be essential and necessary for the synergism between AZD5582 and TRAIL. In vivo, we first time demonstrated that the combined therapy with low doses of AZD5582 and EV-Ts triggered drastically enhanced apoptosis leading to the complete eradication of Huh7 tumor development without any apparent adverse side effects examined. We thus have unraveled the important molecular mechanism underlying TRAIL sensitization by AZD5582, rationalizing the next development of a combination therapy with AZD5582 and EV-T for HCC treatment. KEY MESSAGES: It confirmed the TRAIL sensitization by AZD5582, a potent antagonist of IAPs in hepatocarcinoma. It revealed that the sensitization is via the concomitant suppression of antiapoptotic factors including cFLIP, MCL-1, and IAPs. The downregulation of cFLIP and IAPs like Survivin appeared to be essential and necessary for the synergism between AZD5582 and nanosomal TRAIL. In vivo the combined therapy with AZD5582 and nanosomal TRAIL led to complete eradication of hepatocarcinoma tumors. This study has rationalized the next development of a combination therapy with AZD5582 and nanosomal TRAIL for cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Alquinos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Oligopéptidos , Survivin/metabolismo , Survivin/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
14.
World J Stem Cells ; 13(8): 1049-1057, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34567424

RESUMEN

Compared to other vertebrates, the regenerative capacity of appendages in mammals is very limited. Deer antlers are an exception and can fully regenerate annually in postnatal mammals. This process is initiated by the antler stem cells (AnSCs). AnSCs can be divided into three types: (1) Antlerogenic periosteum cells (for initial pedicle and first antler formation); (2) Pedicle periosteum cells (for annual antler regeneration); and (3) Reserve mesenchyme cells (RMCs) (for rapid antler growth). Previous studies have demonstrated that AnSCs express both classic mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), and are able to differentiate into multiple cell types in vitro. Thus, AnSCs were defined as MSCs, but with partial ESC attributes. Near-perfect generative wound healing can naturally occur in deer, and wound healing can be achieved by the direct injection of AnSCs or topical application of conditioned medium of AnSCs in rats. In addition, in rabbits, the use of both implants with AnSCs and cell-free preparations derived from AnSCs can stimulate osteogenesis and repair defects of bone. A more comprehensive understanding of AnSCs will lay the foundation for developing an effective clinical therapy for wound healing and bone repair.

15.
Adv Healthc Mater ; 10(11): e2100030, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33963815

RESUMEN

Although mesenchymal stem cells (MSCs) can be engineered to deliver the TNF-related apoptosis-inducing ligand (TRAIL) as an effective anticancer therapy, the clinical application is hampered by the costly manufacturing of therapeutic MSCs. Therefore, it is needed to find an alternative cell-free therapy. In this study, TRAIL-armed endoplasmic reticulum (ER)-derived nanosomes (ERN-T) are successfully prepared with an average size of 70.6 nm in diameter from TRAIL transduced MSCs. It is demonstrated that the ERN-T is significantly more efficient for cancer cell killing than the soluble recombinant TRAIL (rTRAIL). AZD5582 is an antagonist of the inhibitors of apoptosis proteins (IAPs), and its combination with ERN-T induces strikingly enhanced apoptosis in cancerous but not normal cells. AZD5582 sensitizes resistant cancer cells to TRAIL through concomitant downregulation of IAP members like XIAP and the Bcl2 family member Mcl-1. Intravenously infused ERN-Ts accumulate in tumors for over 48 h indicating good tumor tropism and retention. The combination of ERN-T and AZD5582 drastically promotes therapeutic efficacy comparing with the cotreatment by rTRAIL and AZD5582 in a subcutaneous MDA-MB-231 xenograft tumor model. The data thus demonstrate that ERN-T can be a novel cell-free alternative to TRAIL-expressing MSC-based anticancer therapy and its efficacy can be drastically enhanced through combination with AZD5582.


Asunto(s)
Neoplasias , Ligando Inductor de Apoptosis Relacionado con TNF , Alquinos , Apoptosis , Línea Celular Tumoral , Retículo Endoplásmico , Humanos , Oligopéptidos
16.
Small ; 6(15): 1647-55, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20623528

RESUMEN

A combined experimental-theoretical study of the mechanical deformation of carbon-nanotube (CNT) nanorings is presented. The CNT ring employed is formed by folding a long and thin single-walled-CNT bundle. The mechanical deformations of the CNT ring when it is pushed against and pulled away from a flat substrate are experimentally characterized in situ, inside a high-resolution scanning electron microscope through nanomanipulation. The experimental measurements clearly reveal that the CNT ring displays a purely elastic behavior during multiple repeated large-displacement deformation processes. A theoretical model based on nonlinear elastica theory is used to quantitatively study the mechanical behavior of the CNT ring and to interpret the experimental results. This work shows for the first time that van der Waals interactions between the CNT ring and the substrate have significant effects on the ring's elastic deformation, including a bifurcation in its force-displacement profile. The results suggest that CNT nanorings can be used as ultrasensitive force sensors and flexible and stretchable structural components in novel nanoscale mechanical and electromechanical systems.


Asunto(s)
Elasticidad , Nanotecnología/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Microscopía Electrónica de Transmisión
17.
Small ; 6(3): 438-45, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19998358

RESUMEN

An in situ electron microscopy study is presented of adhesion interactions between single-walled carbon nanotubes (SWNTs) by mechanically peeling thin free-standing SWNT bundles using in situ nanomanipulation techniques inside a high-resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle in a controlled-displacement manner and capture the deformation curvature of the delaminated SWNT bundle during the peeling process. A theoretical model based on nonlinear elastica theory is employed to interpret the measured deformation curvatures of the SWNTs and to quantitatively evaluate the peeling force and the adhesion strength between bundled SWNTs. The estimated adhesion energy per unit length for each pair of neighboring tubes in the peeling interface based on our peeling experiments agrees reasonably well with the theoretical value. This in situ peeling technique provides a potential new method for separating bundled SWNTs without compromising their material properties. The combined peeling experiments and modeling presented in this paper will be very useful to the study of the adhesion interactions between SWNTs and their nonlinear mechanical behaviors in the large-displacement regime.


Asunto(s)
Fenómenos Mecánicos , Nanotecnología/métodos , Nanotubos de Carbono/química , Adhesividad , Modelos Químicos , Nanotubos de Carbono/ultraestructura , Termodinámica
18.
Cancers (Basel) ; 12(5)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375399

RESUMEN

Tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) is a promising anti-cancer agent that rapidly induces apoptosis in cancer cells. Unfortunately, the clinical application of recombinant TRAIL (rTRAIL) has been hampered by its common cancer resistance. Naturally TRAIL is delivered as a membrane-bound form by extracellular vesicles (EV-T) and is highly efficient for apoptosis induction. SCH727965 (dinaciclib), a potent cyclin-dependent kinase (CDK) inhibitor, was shown to synergize with other drugs to get better efficacy. However, it has never been investigated if dinaciclib coordinates with EV-T to enhance therapeutic results. This study explores the potential of combination therapy with EV-T and dinaciclib for cancer treatment. EV-T was successfully derived from human TRAIL transduced cells and shown to partially overcome resistance of A549 cells. Dinaciclib was shown to drastically enhance EV-T killing effects on cancer lines that express good levels of death receptor (DR) 5, which are associated with suppression of CDK1, CDK9 and anti-apoptotic proteins. Combination therapy with low doses of EV-T and dinaciclib induced strikingly enhanced apoptosis and led to complete regression in A549 tumors without any adverse side effects observed in a subcutaneous xenograft model. Tumor infiltration of mass NK cells and macrophages was also observed. These observations thus indicate that the combination of EV-T with dinaciclib is a potential novel therapy for highly effective and safe cancer treatment.

19.
Biophys J ; 96(3): 1151-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19186150

RESUMEN

There is increasing evidence that UVA radiation, which makes up approximately 95% of the solar UV light reaching the Earth's surface and is also commonly used for cosmetic purposes, is genotoxic. However, in contrast to UVC and UVB, the mechanisms by which UVA produces various DNA lesions are still unclear. In addition, the relative amounts of various types of UVA lesions and their mutagenic significance are also a subject of debate. Here, we exploit atomic force microscopy (AFM) imaging of individual DNA molecules, alone and in complexes with a suite of DNA repair enzymes and antibodies, to directly quantify UVA damage and reexamine its basic mechanisms at a single-molecule level. By combining the activity of endonuclease IV and T4 endonuclease V on highly purified and UVA-irradiated pUC18 plasmids, we show by direct AFM imaging that UVA produces a significant amount of abasic sites and cyclobutane pyrimidine dimers (CPDs). However, we find that only approximately 60% of the T4 endonuclease V-sensitive sites, which are commonly counted as CPDs, are true CPDs; the other 40% are abasic sites. Most importantly, our results obtained by AFM imaging of highly purified native and synthetic DNA using T4 endonuclease V, photolyase, and anti-CPD antibodies strongly suggest that CPDs are produced by UVA directly. Thus, our observations contradict the predominant view that as-yet-unidentified photosensitizers are required to transfer the energy of UVA to DNA to produce CPDs. Our results may help to resolve the long-standing controversy about the origin of UVA-produced CPDs in DNA.


Asunto(s)
Daño del ADN , ADN/química , ADN/metabolismo , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta , Anticuerpos/inmunología , Desoxirribodipirimidina Fotoliasa/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Escherichia coli/enzimología , Microscopía de Fuerza Atómica , Plásmidos/metabolismo , Dímeros de Pirimidina/inmunología , Sensibilidad y Especificidad , Proteínas Virales/metabolismo , Agua/farmacología
20.
Biophys J ; 96(7): 2918-25, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19348773

RESUMEN

We report the results of direct measurements by atomic force microscopy of solvent-driven structural transitions within polyadenylic acid (poly(A)). Both atomic force microscopy imaging and pulling measurements reveal complex strand arrangements within poly(A) induced by acidic pH conditions, with a clear fraction of double-stranded molecules that increases as pH decreases. Among these complex structures, force spectroscopy identified molecules that, upon stretching, displayed two distinct plateau features in the force-extension curves. These plateaus exhibit transition forces similar to those previously observed in native double-stranded DNA (dsDNA). However, the width of the first plateau in the force-extension curves of poly(A) varies significantly, and on average is shorter than the canonical 70% of initial length corresponding to the B-S transition of dsDNA. Also, similar to findings in dsDNA, stretching and relaxing elasticity profiles of dspoly(A) at forces below the mechanical melting transition overlap but reveal hysteresis when the molecules are stretched above the mechanical melting transition. These results strongly suggest that under acidic pH conditions, poly(A) can form duplexes that are mechanically stable. We hypothesize that under acidic conditions, similar structures may be formed by the cellular poly(A) tails on mRNA.


Asunto(s)
Conformación Molecular/efectos de los fármacos , Poli A/química , Solventes/farmacología , Fenómenos Biomecánicos , ADN/química , Elasticidad , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA