Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888456

RESUMEN

MOTIVATION: The advent of multimodal omics data has provided an unprecedented opportunity to systematically investigate underlying biological mechanisms from distinct yet complementary angles. However, the joint analysis of multi-omics data remains challenging because it requires modeling interactions between multiple sets of high-throughput variables. Furthermore, these interaction patterns may vary across different clinical groups, reflecting disease-related biological processes. RESULTS: We propose a novel approach called Differential Canonical Correlation Analysis (dCCA) to capture differential covariation patterns between two multivariate vectors across clinical groups. Unlike classical Canonical Correlation Analysis, which maximizes the correlation between two multivariate vectors, dCCA aims to maximally recover differentially expressed multivariate-to-multivariate covariation patterns between groups. We have developed computational algorithms and a toolkit to sparsely select paired subsets of variables from two sets of multivariate variables while maximizing the differential covariation. Extensive simulation analyses demonstrate the superior performance of dCCA in selecting variables of interest and recovering differential correlations. We applied dCCA to the Pan-Kidney cohort from the Cancer Genome Atlas Program database and identified differentially expressed covariations between noncoding RNAs and gene expressions. AVAILABILITY AND IMPLEMENTATION: The R package that implements dCCA is available at https://github.com/hwiyoungstat/dCCA.


Asunto(s)
Algoritmos , Humanos , Biología Computacional/métodos , Genómica/métodos , Perfilación de la Expresión Génica/métodos , Análisis Multivariante
2.
Bioinformatics ; 38(17): 4078-4087, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35856716

RESUMEN

MOTIVATION: The advancement of high-throughput technology characterizes a wide variety of epigenetic modifications and noncoding RNAs across the genome involved in disease pathogenesis via regulating gene expression. The high dimensionality of both epigenetic/noncoding RNA and gene expression data make it challenging to identify the important regulators of genes. Conducting univariate test for each possible regulator-gene pair is subject to serious multiple comparison burden, and direct application of regularization methods to select regulator-gene pairs is computationally infeasible. Applying fast screening to reduce dimension first before regularization is more efficient and stable than applying regularization methods alone. RESULTS: We propose a novel screening method based on robust partial correlation to detect epigenetic and noncoding RNA regulators of gene expression over the whole genome, a problem that includes both high-dimensional predictors and high-dimensional responses. Compared to existing screening methods, our method is conceptually innovative that it reduces the dimension of both predictor and response, and screens at both node (regulators or genes) and edge (regulator-gene pairs) levels. We develop data-driven procedures to determine the conditional sets and the optimal screening threshold, and implement a fast iterative algorithm. Simulations and applications to long noncoding RNA and microRNA regulation in Kidney cancer and DNA methylation regulation in Glioblastoma Multiforme illustrate the validity and advantage of our method. AVAILABILITY AND IMPLEMENTATION: The R package, related source codes and real datasets used in this article are provided at https://github.com/kehongjie/rPCor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , ARN Largo no Codificante , Programas Informáticos , Epigénesis Genética , Expresión Génica
3.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38343822

RESUMEN

White matter (WM) brain age, a neuroimaging-derived biomarker indicating WM microstructural changes, helps predict dementia and neurodegenerative disorder risks. The cumulative effect of chronic stress on WM brain aging remains unknown. In this study, we assessed cumulative stress using a multi-system composite allostatic load (AL) index based on inflammatory, anthropometric, respiratory, lipidemia, and glucose metabolism measures, and investigated its association with WM brain age gap (BAG), computed from diffusion tensor imaging data using a machine learning model, among 22 951 European ancestries aged 40 to 69 (51.40% women) from UK Biobank. Linear regression, Mendelian randomization, along with inverse probability weighting and doubly robust methods, were used to evaluate the impact of AL on WM BAG adjusting for age, sex, socioeconomic, and lifestyle behaviors. We found increasing one AL score unit significantly increased WM BAG by 0.29 years in association analysis and by 0.33 years in Mendelian analysis. The age- and sex-stratified analysis showed consistent results among participants 45-54 and 55-64 years old, with no significant sex difference. This study demonstrated that higher chronic stress was significantly associated with accelerated brain aging, highlighting the importance of stress management in reducing dementia and neurodegenerative disease risks.

4.
Addiction ; 118(4): 739-749, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36401354

RESUMEN

BACKGROUND AND AIMS: Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. DESIGN: Mendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. SETTING: United Kingdom. PARTICIPANTS: The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. MEASUREMENTS: Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers. FINDINGS: The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10-3 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10-3 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results. CONCLUSIONS: There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.


Asunto(s)
Fumar , Sustancia Blanca , Masculino , Femenino , Humanos , Persona de Mediana Edad , Fumar/epidemiología , Fumar/genética , Análisis de la Aleatorización Mendeliana/métodos , Sustancia Blanca/diagnóstico por imagen , Bancos de Muestras Biológicas , Fumar Tabaco/genética , Reino Unido/epidemiología , Envejecimiento
5.
J Hypertens ; 41(11): 1811-1820, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37682053

RESUMEN

BACKGROUND: Elevated blood pressure (BP) is a modifiable risk factor associated with cognitive impairment and cerebrovascular diseases. However, the causal effect of BP on white matter brain aging remains unclear. METHODS: In this study, we focused on N  = 228 473 individuals of European ancestry who had genotype data and clinical BP measurements available (103 929 men and 124 544 women, mean age = 56.49, including 16 901 participants with neuroimaging data available) collected from UK Biobank (UKB). We first established a machine learning model to compute the outcome variable brain age gap (BAG) based on white matter microstructure integrity measured by fractional anisotropy derived from diffusion tensor imaging data. We then performed a two-sample Mendelian randomization analysis to estimate the causal effect of BP on white matter BAG in the whole population and subgroups stratified by sex and age brackets using two nonoverlapping data sets. RESULTS: The hypertension group is on average 0.31 years (95% CI = 0.13-0.49; P  < 0.0001) older in white matter brain age than the nonhypertension group. Women are on average 0.81 years (95% CI = 0.68-0.95; P  < 0.0001) younger in white matter brain age than men. The Mendelian randomization analyses showed an overall significant positive causal effect of DBP on white matter BAG (0.37 years/10 mmHg, 95% CI 0.034-0.71, P  = 0.0311). In stratified analysis, the causal effect was found most prominent among women aged 50-59 and aged 60-69. CONCLUSION: High BP can accelerate white matter brain aging among late middle-aged women, providing insights on planning effective control of BP for women in this age group.


Asunto(s)
Hipertensión , Sustancia Blanca , Persona de Mediana Edad , Masculino , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Presión Sanguínea/genética , Imagen de Difusión Tensora/métodos , Análisis de la Aleatorización Mendeliana , Bancos de Muestras Biológicas , Envejecimiento/genética , Encéfalo/fisiología , Reino Unido
6.
Pac Symp Biocomput ; 27: 73-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890138

RESUMEN

The advent of simultaneously collected imaging-genetics data in large study cohorts provides an unprecedented opportunity to assess the causal effect of brain imaging traits on externally measured experimental results (e.g., cognitive tests) by treating genetic variants as instrumental variables. However, classic Mendelian Randomization methods are limited when handling high-throughput imaging traits as exposures to identify causal effects. We propose a new Mendelian Randomization framework to jointly select instrumental variables and imaging exposures, and then estimate the causal effect of multivariable imaging data on the outcome. We validate the proposed method with extensive data analyses and compare it with existing methods. We further apply our method to evaluate the causal effect of white matter microstructure integrity (WM) on cognitive function. The findings suggest that our method achieved better performance regarding sensitivity, bias, and false discovery rate compared to individually assessing the causal effect of a single exposure and jointly assessing the causal effect of multiple exposures without dimension reduction. Our application results indicated that WM measures across different tracts have a joint causal effect that significantly impacts the cognitive function among the participants from the UK Biobank.


Asunto(s)
Variación Genética , Análisis de la Aleatorización Mendeliana , Causalidad , Biología Computacional , Humanos , Neuroimagen
7.
Sci Rep ; 11(1): 3203, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547332

RESUMEN

Detection of prognostic factors associated with patients' survival outcome helps gain insights into a disease and guide treatment decisions. The rapid advancement of high-throughput technologies has yielded plentiful genomic biomarkers as candidate prognostic factors, but most are of limited use in clinical application. As the price of the technology drops over time, many genomic studies are conducted to explore a common scientific question in different cohorts to identify more reproducible and credible biomarkers. However, new challenges arise from heterogeneity in study populations and designs when jointly analyzing the multiple studies. For example, patients from different cohorts show different demographic characteristics and risk profiles. Existing high-dimensional variable selection methods for survival analysis, however, are restricted to single study analysis. We propose a novel Cox model based two-stage variable selection method called "Cox-TOTEM" to detect survival-associated biomarkers common in multiple genomic studies. Simulations showed our method greatly improved the sensitivity of variable selection as compared to the separate applications of existing methods to each study, especially when the signals are weak or when the studies are heterogeneous. An application of our method to TCGA transcriptomic data identified essential survival associated genes related to the common disease mechanism of five Pan-Gynecologic cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Genómica , Neoplasias/genética , Transcriptoma , Perfilación de la Expresión Génica , Humanos , Neoplasias/epidemiología , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
8.
Front Genet ; 12: 651546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276766

RESUMEN

With the increasing availability and dropping cost of high-throughput technology in recent years, many-omics datasets have accumulated in the public domain. Combining multiple transcriptomic studies on related hypothesis via meta-analysis can improve statistical power and reproducibility over single studies. For differential expression (DE) analysis, biomarker categorization by DE pattern across studies is a natural but critical task following biomarker detection to help explain between study heterogeneity and classify biomarkers into categories with potentially related functionality. In this paper, we propose a novel meta-analysis method to categorize biomarkers by simultaneously considering the concordant pattern and the biological and statistical significance across studies. Biomarkers with the same DE pattern can be analyzed together in downstream pathway enrichment analysis. In the presence of different types of transcripts (e.g., mRNA, miRNA, and lncRNA, etc.), integrative analysis including miRNA/lncRNA target enrichment analysis and miRNA-mRNA and lncRNA-mRNA causal regulatory network analysis can be conducted jointly on all the transcripts of the same category. We applied our method to two Pan-cancer transcriptomic study examples with single or multiple types of transcripts available. Targeted downstream analysis identified categories of biomarkers with unique functionality and regulatory relationships that motivate new hypothesis in Pan-cancer analysis.

9.
Genes (Basel) ; 13(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35052378

RESUMEN

Genome-wide association studies (GWAS) have identified and reproduced thousands of diseases associated loci, but many of them are not directly interpretable due to the strong linkage disequilibrium among variants. Transcriptome-wide association studies (TWAS) incorporated expression quantitative trait loci (eQTL) cohorts as a reference panel to detect associations with the phenotype at the gene level and have been gaining popularity in recent years. For nicotine addiction, several important susceptible genetic variants were identified by GWAS, but TWAS that detected genes associated with nicotine addiction and unveiled the underlying molecular mechanism were still lacking. In this study, we used eQTL data from the Genotype-Tissue Expression (GTEx) consortium as a reference panel to conduct tissue-specific TWAS on cigarettes per day (CPD) over thirteen brain tissues in two large cohorts: UK Biobank (UKBB; number of participants (N) = 142,202) and the GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN; N = 143,210), then meta-analyzing the results across tissues while considering the heterogeneity across tissues. We identified three major clusters of genes with different meta-patterns across tissues consistent in both cohorts, including homogenous genes associated with CPD in all brain tissues; partially homogeneous genes associated with CPD in cortex, cerebellum, and hippocampus tissues; and, lastly, the tissue-specific genes associated with CPD in only a few specific brain tissues. Downstream enrichment analyses on each gene cluster identified unique biological pathways associated with CPD and provided important biological insights into the regulatory mechanism of nicotine dependence in the brain.


Asunto(s)
Encéfalo/patología , Predisposición Genética a la Enfermedad/genética , Tabaquismo/genética , Transcriptoma/genética , Adulto , Anciano , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA