Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103866, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263459

RESUMEN

Development of neuronal and glial populations in the dorsal root ganglia (DRG) is required for detection of touch, body position, temperature, and noxious stimuli. While female-male differences in somatosensory perception have been previously reported, no study has examined global sex differences in the abundance of DRG cell types, and the developmental origin of these differences has not been characterized. To investigate whether sex-specific differences in neuronal and glial cell types arise in the DRG during development, we performed single-cell mass cytometry analysis on sex-separated DRGs from 4 separate litter replicates of postnatal day 0 (P0) C57/BL6 mouse pups. In this analysis, we observed that females had a higher abundance of total neurons (p = 0.0266), as well as an increased abundance of TrkB+ (p = 0.031) and TrkC+ (p = 0.04) neurons for mechanoreception and proprioception, while males had a higher abundance of TrkA+ (p = 0.025) neurons for thermoreception and nociception. Pseudotime comparison of the female and male datasets indicates that male neurons are more mature and differentiated than female neurons at P0. These findings warrant further studies to determine whether these differences are maintained across development, and their impact on somatosensory perception.


Asunto(s)
Ganglios Espinales , Caracteres Sexuales , Ratones , Animales , Femenino , Masculino , Animales Recién Nacidos , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Diferenciación Celular
2.
Mol Cell Neurosci ; 82: 66-75, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28461220

RESUMEN

Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a-/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior.


Asunto(s)
Axones/metabolismo , Neurotrofina 3/metabolismo , Transducción de Señal/fisiología , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
3.
J Biol Chem ; 290(34): 20674-20686, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26139604

RESUMEN

The γ-protocadherins (γ-Pcdhs) are a family of 22 adhesion molecules with multiple critical developmental functions, including the proper formation of dendritic arbors by forebrain neurons. The γ-Pcdhs bind to and inhibit focal adhesion kinase (FAK) via a constant C-terminal cytoplasmic domain shared by all 22 proteins. In cortical neurons lacking the γ-Pcdhs, aberrantly high activity of FAK and of PKC disrupts dendrite arborization. Little is known, however, about how γ-Pcdh function is regulated by other factors. Here we show that PKC phosphorylates a serine residue situated within a phospholipid binding motif at the shared γ-Pcdh C terminus. Western blots using a novel phospho-specific antibody against this site suggest that a portion of γ-Pcdh proteins is phosphorylated in the cortex in vivo. We find that PKC phosphorylation disrupts both phospholipid binding and the γ-Pcdh inhibition of (but not binding to) FAK. Introduction of a non-phosphorylatable (S922A) γ-Pcdh construct into wild-type cortical neurons significantly increases dendrite arborization. This same S922A construct can also rescue dendrite arborization defects in γ-Pcdh null neurons cell autonomously. Consistent with these data, introduction of a phosphomimetic (S/D) γ-Pcdh construct or treatment with a PKC activator reduces dendrite arborization in wild-type cortical neurons. Together, these data identify a novel mechanism through which γ-Pcdh control of a signaling pathway important for dendrite arborization is regulated.


Asunto(s)
Cadherinas/metabolismo , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Neurogénesis/genética , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/ultraestructura , Dendritas/efectos de los fármacos , Dendritas/genética , Dendritas/ultraestructura , Embrión de Mamíferos , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Fosfatidilinositoles/metabolismo , Fosforilación , Cultivo Primario de Células , Unión Proteica , Proteína Quinasa C/genética , Estructura Terciaria de Proteína , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
4.
J Neurosci ; 37(26): 6180-6182, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659330
5.
Sci Rep ; 13(1): 3657, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871060

RESUMEN

Proper wiring of the peripheral nervous system relies on neurotrophic signaling via nerve growth factor (NGF). NGF secreted by target organs (i.e. eye) binds to the TrkA receptor expressed on the distal axons of postganglionic neurons. Upon binding, TrkA is internalized into a signaling endosome and retrogradely trafficked back to the soma and into the dendrites to promote cell survival and postsynaptic maturation, respectively. Much progress has been made in recent years to define the fate of the retrogradely trafficked TrkA signaling endosome, yet it has not been fully characterized. Here we investigate extracellular vesicles (EVs) as a novel route of neurotrophic signaling. Using the mouse superior cervical ganglion (SCG) as a model, we isolate EVs derived from sympathetic cultures and characterize them using immunoblot assays, nanoparticle tracking analysis, and cryo-electron microscopy. Furthermore, using a compartmentalized culture system, we find that TrkA derived from endosomes originating in the distal axon can be detected on EVs secreted from the somatodendritic domain. In addition, inhibition of classic TrkA downstream pathways, specifically in somatodendritic compartments, greatly decreases TrkA packaging into EVs. Our results suggest a novel trafficking route for TrkA: it can travel long distances to the cell body, be packaged into EVs, and be secreted. Secretion of TrkA via EVs appears to be regulated by its own downstream effector cascades, raising intriguing future questions about novel functionalities associated with TrkA+ EVs.


Asunto(s)
Vesículas Extracelulares , Factor de Crecimiento Nervioso , Animales , Ratones , Microscopía por Crioelectrón , Neuronas , Receptor trkA
6.
Nat Neurosci ; 25(11): 1543-1558, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303068

RESUMEN

Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein-mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.


Asunto(s)
Ganglios Espinales , Neuronas , Masculino , Femenino , Ratones , Animales , Ganglios Espinales/fisiología , Neuronas/fisiología , Neuroglía , Diferenciación Celular , ARN Mensajero/genética
7.
J Cell Biol ; 216(5): 1223-1225, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28411190

RESUMEN

A competitive balance between constructive and destructive developmental cues governs both the form and function of the vertebrate nervous system. In this issue, Foldi et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201607098) explore the evolutionary origins of these cues and report that in Drosophila melanogaster pro- and mature neurotrophins are capable of inducing death and survival pathways, respectively, by binding Toll receptor family members, which then recruit distinct sets of effector proteins.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Evolución Biológica , Factores de Crecimiento Nervioso/genética
8.
Cell Rep ; 15(5): 1037-1050, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117416

RESUMEN

Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.


Asunto(s)
Cadherinas/metabolismo , Comunicación Celular , Dendritas/metabolismo , Animales , Astrocitos/metabolismo , Proteínas Relacionadas con las Cadherinas , Corteza Cerebral/metabolismo , Ratones Transgénicos , Unión Proteica , Isoformas de Proteínas/metabolismo
9.
Cell Adh Migr ; 9(3): 214-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25869446

RESUMEN

The proper formation of dendritic arbors is a critical step in neural circuit formation, and as such defects in arborization are associated with a variety of neurodevelopmental disorders. Among the best gene candidates are those encoding cell adhesion molecules, including members of the diverse cadherin superfamily characterized by distinctive, repeated adhesive domains in their extracellular regions. Protocadherins (Pcdhs) make up the largest group within this superfamily, encompassing over 80 genes, including the ∼60 genes of the α-, ß-, and γ-Pcdh gene clusters and the non-clustered δ-Pcdh genes. An additional group includes the atypical cadherin genes encoding the giant Fat and Dachsous proteins and the 7-transmembrane cadherins. In this review we highlight the many roles that Pcdhs and atypical cadherins have been demonstrated to play in dendritogenesis, dendrite arborization, and dendritic spine regulation. Together, the published studies we discuss implicate these members of the cadherin superfamily as key regulators of dendrite development and function, and as potential therapeutic targets for future interventions in neurodevelopmental disorders.


Asunto(s)
Cadherinas/fisiología , Dendritas/fisiología , Neuronas/fisiología , Transducción de Señal , Animales , Cadherinas/clasificación , Cadherinas/genética , Moléculas de Adhesión Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA