Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Res ; 38(3): 531-548, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33713012

RESUMEN

PURPOSE: Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. METHODS: FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. RESULTS: Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. CONCLUSION: AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.


Asunto(s)
Anticuerpos Monoclonales/química , Portadores de Fármacos/química , Ácidos Grasos no Esterificados/química , Ácido Oléico/química , Polisorbatos/química , Composición de Medicamentos , Estabilidad de Medicamentos , Hidrólisis , Metionina/química , Oxidación-Reducción , Estrés Oxidativo , Tamaño de la Partícula , Triptófano/análogos & derivados , Triptófano/química
2.
PDA J Pharm Sci Technol ; 70(4): 332-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27020650

RESUMEN

Degradation of the surfactant polysorbate (PS) by enzyme impurities has been previously suggested as a mechanism for the formation of visible and subvisible particles that affect product quality. Although chemical degradation pathways of PS, such as oxidation and acid/base hydrolysis, have been previously characterized, enzymatic degradation of PS remains poorly understood. In this report, enzyme-mediated hydrolysis of the major components of PS was monitored using an evaporative light scattering detection-high-performance liquid chromatography method. PS20 and PS80 tested contained 99% of laurate and 98% oleate esters, respectively, were heterogeneous with respect to head group, and contained a distribution of ester types. Carboxylester hydrolases tested included those from Pseudomonas cepacia, Thermomyces lanuginosus, Candida antarctica, rabbit liver, and pig pancreas. PS hydrolysis was monitored by observing the change in the peak area of major PS components over time and quantified using a parameter called t50, which was defined as the time required for each peak to reach 50% of its initial value. Time course experiments suggested that PS hydrolysis was dependent on the order of esters (mono-, di-, or triester), the identity of the hydrophilic head group (sorbitan or isosorbide), and the identity of the fatty acid ester tail (C12 vs C18:1). In addition, the pattern of PS hydrolysis was unique to the type of enzyme used. Importantly, we observed that no PS component was completely resistant to the carboxylester hydrolases tested here. Our results illustrate a potential fingerprint approach that could be useful in verifying enzyme-mediated PS degradation in drug substance and provide an improved understanding of the complexity of PS degradation in the presence of enzymes. LAY ABSTRACT: Degradation of the non-ionic surfactant polysorbate (PS) has been reported to lead to the formation of visible and subvisible particles that affect product quality. Chemical degradation pathways of PS, such as oxidation and acid/base hydrolysis, have been previously studied, but enzymatic degradation of PS remains poorly understood. In this study, enzyme-mediated hydrolysis of the major components in a heterogeneous mixture of PS20 or PS80 was monitored using an evaporative light scattering detection-high-performance liquid chromatography method. Carboxylester hydrolases from a broad range of organisms were tested, including enzymes from Pseudomonas cepacia, Thermomyces lanuginosus, Candida antarctica, rabbit liver, and pig pancreas. Time course experiments suggested that PS hydrolysis was dependent on the order of esters (mono-, di-, or triester), the identity of the hydrophilic head group (sorbitan or isosorbide), the identity of the fatty acid ester tail (C12 vs C18:1), and the identity of the enzyme. Importantly, no PS component was completely resistant to all the carboxylester hydrolases tested here. Our results illustrate a potential fingerprint approach that could be useful in verifying or identifying enzyme-mediated PS degradation in drug substance and provide an improved understanding of the complexity of PS degradation in the presence of enzymes.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Química Farmacéutica/métodos , Polisorbatos/metabolismo , Animales , Hidrolasas de Éster Carboxílico/análisis , Cromatografía Líquida de Alta Presión/métodos , Hidrólisis , Polisorbatos/análisis , Conejos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA