Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA ; 29(7): 1033-1050, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019633

RESUMEN

The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.


Asunto(s)
Aspergillus fumigatus , Transcriptoma , Aspergillus fumigatus/genética , Interferencia de ARN , Esporas Fúngicas/genética , ARN Bicatenario
2.
Trends Microbiol ; 30(5): 411-420, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34635448

RESUMEN

In recent decades, RNA-based therapeutics have transitioned from a near impossibility to a compelling treatment alternative for genetic disorders and infectious diseases. The mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are truly groundbreaking, and new adaptations are already being proposed to fight other microbes. Unfortunately, the potential of RNA-based therapeutics to treat human fungal infections has remained mostly absent from the conversation, despite the fact that invasive fungal infections kill as many per year as tuberculosis and even more than malaria. Here, we argue that RNA-based therapeutics should be investigated for the treatment of human fungal infections and discuss several major roadblocks and potential circumventions that may allow for the realization of RNA-based therapies against human fungal pathogens.


Asunto(s)
COVID-19 , Micosis , COVID-19/terapia , Humanos , Micosis/terapia , ARN , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA