Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 19(4): 428-435, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31932670

RESUMEN

All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite-, garnet- and NASICON-type solid electrolytes that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is notably larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.

2.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931965

RESUMEN

The upcoming energy transition requires not only renewable energy sources but also novel electricity storage systems such as batteries. Despite Li-ion batteries being the main storage systems, other batteries have been proposed to fulfil the requirements on safety, costs, and resource availability. Moving away from lithium, materials such as sodium, magnesium, zinc, and calcium are being considered. Water-based electrolytes are known for their improved safety, environmentally friendliness, and affordability. The key, however, is how to utilize the negative metal electrode, as using water-based electrolytes with these metals becomes an issue with respect to oxidation and/or dendrite formation. This work studied magnesium, where we aimed to determine if it can be electrochemically deposited in aqueous solutions with alginate-based additives to protect the magnesium. In order to do so, atomic force microscopy was used to research the morphological structure of magnesium deposition at the local scale by using a probe-the tip of a cantilever-as the active electrode, during charging and discharging. The second goal of using the AFM probe technology for magnesium deposition and stripping was an extension of our previous study in which we investigated, for lithium, whether it is possible to measure ion current and perform nonfaradaic impedance measurements at the local scale. The work presented here shows that this is possible in a relatively simple way because, with magnesium, no dendrite formation occurs, which hinders the stripping process.

3.
Polymers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771941

RESUMEN

We present a sustainable, inherently safe battery chemistry that is based on widely available and cheap materials, that is, iron and manganese hosted in alginate bio-material known from the food and medical industry. The resulting battery can be recycled to allow circularity. The electrodes were synthesised by the alginate caging the multi-valent metals to form a hydrogel in an aqueous environment. Characterisation includes FTIR, XPS and Mössbauer spectroscopy. The electrochemical performance of the electrodes was investigated by performing cyclic voltammetry (CV) and (dis)charge experiments. Mn and Fe ions show good co-ordination with the alginic acid with higher oxidation states demonstrating complex bonding behaviour. The non-optimised iron and manganese alginate electrodes already exhibit a cycling efficiency of 98% and 69%, respectively. This work shows that Fe and Mn atomically disperse in a bio-based host material and can act as electrodes in an aqueous battery chemistry. While demonstrated at cell level, it is furthermore explained how these materials can form the basis for a (semi-solid) flow cell.

4.
Org Chem Front ; 9(4): 1090-1108, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35311213

RESUMEN

A novel protocol for the synthesis of perylene diimides (PDIs), by reacting perylene dianhydride (PDA) with aliphatic amines is reported. Full conversions were obtained at temperatures between 20 and 60 °C, using DBU as the base in DMF or DMSO. A "green" synthesis of PDIs, that runs at higher temperatures, was developed using K2CO3 in DMSO. The reaction sequence for the imidization process, via perylene amic acid intermediates (PAAs), has been confirmed experimentally aided by the synthesis and full characterization of stable model amic acid salts and amic esters. Kinetic studies, using absorption spectroscopy, have established that PDI formation proceeds via fast amic acid formation, followed by a slow conversion to imides. Solubility of the intermediate PAA salts is found to be low and rate-limiting. Based on this finding, quantitative PDI synthesis at room temperature was achieved by diluting the reaction mixture with water, the solvent in which PAA salts have better solubility. Thus, the otherwise harsh synthesis of PDIs has been transformed into an extremely convenient functional group tolerant and highly efficient reaction that runs at room temperature.

5.
Chem Commun (Camb) ; 58(19): 3130-3133, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129189

RESUMEN

Conformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid-electrolyte interface formation. Here, we use operando transmission electron microscopy in an open cell to show that TiO2 coatings on Si/SiO2 particles undergo thickness dependent rupture on battery cycling where thicker coatings crumble more readily than thinner (∼5 nm) coatings, which corroborates the difference in their capacities.

6.
J Nanosci Nanotechnol ; 10(9): 5800-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21133108

RESUMEN

An alternative technique for synthesizing nanostructured powders in liquid solutions has been developed. The technique combines generation of charged aerosols via electrospray with reductive precipitation reactions in liquids. Electrospray of liquids is carried out to produce micrometric, nearly mono-dispersed airborne droplets from a precursor solution. The droplets, which are spatially separated due to electrostatic repulsion, are collected in a bath containing a reductive solution. The effect of some process parameters on the resulting material texture has been studied. Tin particles produced from tin chloride solutions are regarded as a model here, but it is stressed that this approach can be considered as a general method to synthesize many other metallic-like materials, such as alloys and intermetallics. Hence, the large variety of materials that can be produced in this way could find several relevant applications in different technological fields.

7.
ACS Appl Energy Mater ; 3(3): 2271-2277, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32954221

RESUMEN

Developing multifunctional polymeric binders is key to the design of energy storage technologies with value-added features. We report that a multigram-scale synthesis of perylene diimide polymer (PPDI), from a single batch via polymer analogous reaction route, yields high molecular weight polymers with suitable thermal stability and minimized solubility in electrolytes, potentially leading to improved binding affinity toward electrode particles. Further, it develops strategies for designing copolymers with virtually any desired composition via a subsequent grafting, leading to purpose-built binders. PPDI dye as both binder and electroactive additive in lithium half-cells using lithium iron phosphate exhibits good electrochemical performance.

8.
J Nanosci Nanotechnol ; 9(4): 2546-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19438000

RESUMEN

Here we present a technique based on an initial densification of solid precursor materials using magnetic pulses followed by an atomization process via spark discharging. These two processes allow changing bulky micron sized materials into nanoparticles (5-60 nm). The resulting intermediates and nanomaterials have been characterized using electron microscopy (TEM, SEM) and X-ray diffraction to show the texture and structure evolution between the initial bulk phase and the final nanoparticles. In this paper we present the nanoparticle formation of certain metals (Cu, Sn, Sb), alloys and intermetallics (SnSb, Cu2Sb) starting with pure elemental powders.

9.
ACS Appl Mater Interfaces ; 10(39): 33296-33306, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30199216

RESUMEN

The high Li-ion conductivity of the argyrodite Li6PS5Cl makes it a promising solid electrolyte candidate for all-solid-state Li-ion batteries. For future application, it is essential to identify facile synthesis procedures and to relate the synthesis conditions to the solid electrolyte material performance. Here, a simple optimized synthesis route is investigated that avoids intensive ball milling by direct annealing of the mixed precursors at 550 °C for 10 h, resulting in argyrodite Li6PS5Cl with a high Li-ion conductivity of up to 4.96 × 10-3 S cm-1 at 26.2 °C. Both the temperature-dependent alternating current impedance conductivities and solid-state NMR spin-lattice relaxation rates demonstrate that the Li6PS5Cl prepared under these conditions results in a higher conductivity and Li-ion mobility compared to materials prepared by the traditional mechanical milling route. The origin of the improved conductivity appears to be a combination of the optimal local Cl structure and its homogeneous distribution in the material. All-solid-state cells consisting of an 80Li2S-20LiI cathode, the optimized Li6PS5Cl electrolyte, and an In anode showed a relatively good electrochemical performance with an initial discharge capacity of 662.6 mAh g-1 when a current density of 0.13 mA cm-2 was used, corresponding to a C-rate of approximately C/20. On direct comparison with a solid-state battery using a solid electrolyte prepared by the mechanical milling route, the battery made with the new material exhibits a higher initial discharge capacity and Coulombic efficiency at a higher current density with better cycling stability. Nevertheless, the cycling stability is limited by the electrolyte stability, which is a major concern for these types of solid-state batteries.

10.
J Am Chem Soc ; 126(41): 13526-33, 2004 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-15479109

RESUMEN

Li(x)Mg(0.1)Ni(0.4)Mn(1.5)O(4) spinel (P4(3)32) was chemically and electrochemically lithiated in the range 1 < x

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA