Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 299(8): 105043, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451480

RESUMEN

The ubiquitin signaling pathway is crucial for the DNA damage response pathway. More specifically, RNF168 is integral in regulating DNA repair proteins at damaged chromatin. However, the detailed mechanism by which RNF168 is regulated in cells is not fully understood. Here, we identify the ubiquitin-ribosomal fusion proteins UBA80 (also known as RPS27A) and UBA52 (also known as RPL40) as interacting proteins for H2A/H2AX histones and RNF168. Both UBA80 and UBA52 are recruited to laser-induced micro-irradiation DNA damage sites and are required for DNA repair. Ectopic expression of UBA80 and UBA52 inhibits RNF168-mediated H2A/H2AX ubiquitination at K13/15 and impairs 53BP1 recruitment to DNA lesions. Mechanistically, the C-terminal ribosomal fragments of UBA80 and UBA52, S27A and L40, respectively, limit RNF168-nucleosome engagement by masking the regulatory acidic residues at E143/E144 and the nucleosome acidic patch. Together, our results reveal that UBA80 and UBA52 antagonize the ubiquitination signaling pathway and fine-tune the spatiotemporal regulation of DNA repair proteins at DNA damage sites.


Asunto(s)
Reparación del ADN , Histonas , Nucleosomas , Proteínas Ribosómicas , Ubiquitina-Proteína Ligasas , Daño del ADN , Histonas/metabolismo , Nucleosomas/genética , Proteínas Ribosómicas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos
2.
PLoS Pathog ; 17(10): e1009881, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34624065

RESUMEN

Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a ß-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence.


Asunto(s)
Pared Celular/fisiología , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Virulencia
3.
PLoS Pathog ; 15(7): e1007971, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31344131

RESUMEN

The ability of Staphylococcus aureus and other pathogens to consume glucose is critical during infection. However, glucose consumption increases the cellular demand for manganese sensitizing S. aureus to host-imposed manganese starvation. The current investigations were undertaken to elucidate how S. aureus copes with the need to consume glucose when metal-limited by the host. A critical component of host defense is production of the manganese binding protein calprotectin. S. aureus has two variants of phosphoglycerate mutase, one of which is manganese-dependent, GpmI, and another that is manganese-independent, GpmA. Leveraging the ability to impose metal starvation in culture utilizing calprotectin revealed that the loss of GpmA, but not GpmI, sensitized S. aureus to manganese starvation. Metabolite feeding experiments revealed that the growth defect of GpmA when manganese-starved was due to a defect in glycolysis and not gluconeogenesis. Loss of GpmA reduces the ability of S. aureus to cause invasive disease in wild type mice. However, GpmA was dispensable in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of S. aureus to overcome manganese limitation during infection. Cumulatively, these observations suggest that expressing a metal-independent variant enables S. aureus to consume glucose while mitigating the negative impact that glycolysis has on the cellular demand for manganese. S. aureus is not the only bacterium that expresses manganese-dependent and -independent variants of phosphoglycerate mutase. Similar results were also observed in culture with Salmonella enterica serovar Typhimurium mutants lacking the metal-independent isozyme. These similar observations in both Gram-positive and Gram-negative pathogens suggest that expression of metal-independent glycolytic isozymes is a common strategy employed by bacteria to survive in metal-limited environments, such as the host.


Asunto(s)
Metales/metabolismo , Fosfoglicerato Mutasa/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Variación Genética , Glucólisis , Isoenzimas/genética , Isoenzimas/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoglicerato Mutasa/genética , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Virulencia
4.
Nucleic Acids Res ; 47(12): 6236-6249, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30982887

RESUMEN

The tumor suppressor protein 53BP1 plays key roles in response to DNA double-strand breaks (DSBs) by serving as a master scaffold at the damaged chromatin. Current evidence indicates that 53BP1 assembles a cohort of DNA damage response (DDR) factors to distinctly execute its repertoire of DSB responses, including checkpoint activation and non-homologous end joining (NHEJ) repair. Here, we have uncovered LC8 (a.k.a. DYNLL1) as an important 53BP1 effector. We found that LC8 accumulates at laser-induced DNA damage tracks in a 53BP1-dependent manner and requires the canonical H2AX-MDC1-RNF8-RNF168 signal transduction cascade. Accordingly, genetic inactivation of LC8 or its interaction with 53BP1 resulted in checkpoint defects. Importantly, loss of LC8 alleviated the hypersensitivity of BRCA1-depleted cells to ionizing radiation and PARP inhibition, highlighting the 53BP1-LC8 module in counteracting BRCA1-dependent functions in the DDR. Together, these data establish LC8 as an important mediator of a subset of 53BP1-dependent DSB responses.


Asunto(s)
Dineínas Citoplasmáticas/fisiología , Roturas del ADN de Doble Cadena , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína BRCA1/genética , Línea Celular , Cromatina/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Reparación del ADN , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Radiación Ionizante
5.
J Bacteriol ; 202(22)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32868400

RESUMEN

Phosphate is an essential nutrient that Staphylococcus aureus and other pathogens must acquire from the host during infection. While inorganic monophosphate (Pi) is the preferred source of this nutrient, bacteria can also obtain it from phosphate-containing organic molecules. The Pi-responsive regulator PhoPR is necessary for S. aureus to cause infection, suggesting that Pi is not freely available during infection and that this nutrient must be obtained from other sources. However, the organophosphates from which S. aureus can obtain phosphate are unknown. We evaluated the ability of 58 phosphorus-containing molecules to serve as phosphate sources for S. aureus Forty-six of these compounds, including phosphorylated amino acids, sugars, and nucleotides, supported growth. Among the organophosphate sources was glycerol-3-phosphate (G3P), which is commonly found in the mammalian host. Differing from the model organism Escherichia coli, S. aureus does not import G3P intact to obtain Pi Instead, S. aureus relies on the phosphatase PhoB to release Pi from G3P, which is subsequently imported by Pi transporters. To determine if this strategy is used by S. aureus to extract phosphate from other phosphate sources, we assessed the ability of PhoB- and Pi transporter-deficient strains to grow on the same library of phosphorus-containing molecules. Sixty percent of the substrates (28/46) relied on the PhoB/Pi transporter pathway, and an additional 10/46 (22%) were PhoB independent but still required Pi transport through the Pi transporters. Cumulatively, these results suggest that in Pi-limited environments, S. aureus preferentially generates Pi from organophosphates and then relies on Pi transporters to import this nutrient.IMPORTANCE For bacteria, the preferred form of the essential nutrient phosphate is inorganic monophosphate (Pi), but phosphate can also be extracted from a variety of phosphocompounds. Pathogens, including Staphylococcus aureus, experience Pi limitation within the host, suggesting that the use of alternative phosphate sources is important during infection. However, the alternative phosphate sources that can be used by S. aureus and others remain largely unexplored. We screened a library of phosphorus-containing compounds for the ability to support growth as a phosphate source. S. aureus could use a variety of phosphocompounds, including nucleotides, phosphosugars, and phosphoamino acids. Subsequent genetic analysis determined that a majority of these alternative phosphate sources are first processed extracellularly to liberate Pi, which is then imported through Pi transporters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Organofosfatos/metabolismo , Fosfatos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nutrientes , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
6.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32205403

RESUMEN

To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.


Asunto(s)
Homeostasis , Interacciones Huésped-Patógeno , Fenómenos Fisiológicos de la Nutrición , Fosfatos/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Susceptibilidad a Enfermedades , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Metales/metabolismo
7.
Infect Immun ; 86(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30061377

RESUMEN

Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Virulencia
8.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084897

RESUMEN

During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus/metabolismo
9.
PLoS Pathog ; 12(11): e1006040, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27902777

RESUMEN

During infection the host imposes manganese and zinc starvation on invading pathogens. Despite this, Staphylococcus aureus and other successful pathogens remain capable of causing devastating disease. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. We report that ArlRS, a global staphylococcal virulence regulator, enhances the ability of S. aureus to grow in the presence of the manganese-and zinc-binding innate immune effector calprotectin. Utilization of calprotectin variants with altered metal binding properties revealed that strains lacking ArlRS are specifically more sensitive to manganese starvation. Loss of ArlRS did not alter the expression of manganese importers or prevent S. aureus from acquiring metals. It did, however, alter staphylococcal metabolism and impair the ability of S. aureus to grow on amino acids. Further studies suggested that relative to consuming glucose, the preferred carbon source of S. aureus, utilizing amino acids reduced the cellular demand for manganese. When forced to use glucose as the sole carbon source S. aureus became more sensitive to calprotectin compared to when amino acids are provided. Infection experiments utilizing wild type and calprotectin-deficient mice, which have defects in manganese sequestration, revealed that ArlRS is important for disease when manganese availability is restricted but not when this essential nutrient is freely available. In total, these results indicate that altering cellular metabolism contributes to the ability of pathogens to resist manganese starvation and that ArlRS enables S. aureus to overcome nutritional immunity by facilitating this adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Bacterianas/metabolismo , Evasión Inmune/fisiología , Proteínas Quinasas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Complejo de Antígeno L1 de Leucocito/metabolismo , Manganeso/metabolismo , Ratones
10.
Nat Commun ; 15(1): 4634, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821984

RESUMEN

The master DNA damage repair histone protein, H2AX, is essential for orchestrating the recruitment of downstream mediator and effector proteins at damaged chromatin. The phosphorylation of H2AX at S139, γH2AX, is well-studied for its DNA repair function. However, the extended C-terminal tail is not characterized. Here, we define the minimal motif on H2AX for the canonical function in activating the MDC1-RNF8-RNF168 phosphorylation-ubiquitination pathway that is important for recruiting repair proteins, such as 53BP1 and BRCA1. Interestingly, H2AX recruits 53BP1 independently from the MDC1-RNF8-RNF168 pathway through its evolved C-terminal linker region with S139 phosphorylation. Mechanistically, 53BP1 recruitment to damaged chromatin is mediated by the interaction between the H2AX C-terminal tail and the 53BP1 Oligomerization-Tudor domains. Moreover, γH2AX-linker mediated 53BP1 recruitment leads to camptothecin resistance in H2AX knockout cells. Overall, our study uncovers an evolved mechanism within the H2AX C-terminal tail for regulating DNA repair proteins at damaged chromatin.


Asunto(s)
Cromatina , Daño del ADN , Reparación del ADN , Histonas , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitinación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Histonas/metabolismo , Histonas/genética , Humanos , Cromatina/metabolismo , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Camptotecina/farmacología , Células HEK293 , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas de Ciclo Celular , Proteínas Adaptadoras Transductoras de Señales
11.
Nat Commun ; 11(1): 2462, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424115

RESUMEN

Histone ubiquitination plays an important role in the DNA damage response (DDR) pathway. RNF168 catalyzes H2A and H2AX ubiquitination on lysine 13/15 (K13/K15) upon DNA damage and promotes the accrual of downstream repair factors at damaged chromatin. Here, we report that RNF168 ubiquitinates the non-canonical H2A variants H2AZ and macroH2A1/2 at the divergent N-terminal tail lysine residue. In addition to their evolutionarily conserved nucleosome acidic patch, we identify the positively charged alpha1-extension helix as essential for RNF168-mediated ubiquitination of H2A variants. Moreover, mutation of the RNF168 UMI (UIM- and MIU-related UBD) hydrophilic acidic residues abolishes RNF168-mediated ubiquitination as well as 53BP1 and BRCA1 ionizing radiation-induced foci formation. Our results reveal a juxtaposed bipartite electrostatic interaction utilized by the nucleosome to direct RNF168 orientation towards the target lysine residues in proximity to the H2A alpha1-extension helix, which plays an important role in the DDR pathway.


Asunto(s)
Histonas/química , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Evolución Molecular , Células HEK293 , Histonas/genética , Humanos , Lisina/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
mBio ; 8(5)2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089427

RESUMEN

During infection, the host sequesters essential nutrients, such as zinc, to combat invading microbes. Despite the ability of the immune effector protein calprotectin to bind zinc with subpicomolar affinity, Staphylococcus aureus is able to successfully compete with the host for zinc. However, the zinc importers expressed by S. aureus remain unknown. Our investigations have revealed that S. aureus possesses two importers, AdcABC and CntABCDF, which are induced in response to zinc limitation. While AdcABC is similar to known zinc importers in other bacteria, CntABCDF has not previously been associated with zinc acquisition. Concurrent loss of the two systems severely impairs the ability of S. aureus to obtain zinc and grow in zinc-limited environments. Further investigations revealed that the Cnt system is responsible for the ability of S. aureus to compete with calprotectin for zinc in culture and contributes to acquisition of zinc during infection. The cnt locus also enables S. aureus to produce the broad-spectrum metallophore staphylopine. Similarly to the Cnt transporter, loss of staphylopine severely impairs the ability of S. aureus to resist host-imposed zinc starvation, both in culture and during infection. Further investigations revealed that together staphylopine and the Cnt importer function analogously to siderophore-based iron acquisition systems in order to facilitate zinc acquisition by S. aureus Analogous systems are found in a broad range of Gram-positive and Gram-negative bacterial pathogens, suggesting that this new type of zinc importer broadly contributes to the ability of bacteria to cause infection.IMPORTANCE A critical host defense against infection is the restriction of zinc availability. Despite the subpicomolar affinity of the immune effector calprotectin for zinc, Staphylococcus aureus can successfully compete for this essential metal. Here, we describe two zinc importers, AdcABC and CntABCDF, possessed by S. aureus, the latter of which has not previously been associated with zinc acquisition. The ability of S. aureus to compete with the host for zinc is dependent on CntABCDF and the metallophore staphylopine, both in culture and during infection. These results expand the mechanisms utilized by bacteria to obtain zinc, beyond Adc-like systems, and demonstrate that pathogens utilize strategies similar to siderophore-based iron acquisition to obtain other essential metals during infection. The staphylopine synthesis machinery is present in a diverse collection of bacteria, suggesting that this new family of zinc importers broadly contributes to the ability of numerous pathogens to cause infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Imidazoles/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Complejo de Antígeno L1 de Leucocito/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Sideróforos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA