Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38423763

RESUMEN

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.


Asunto(s)
Células Receptoras Sensoriales , Pez Cebra , Animales , Pez Cebra/metabolismo , Animales Modificados Genéticamente , Supervivencia Celular , Células Receptoras Sensoriales/fisiología , Axones/fisiología , Análisis de la Célula Individual , Mamíferos
2.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37333232

RESUMEN

Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that additional to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study we use single cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron (PMn) in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes'. The ion channel types are specialized for promoting high frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.

3.
Elife ; 122023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975797

RESUMEN

Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that in addition to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study, we use single-cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron, in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes.' The ion channel types are specialized for promoting high-frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high-speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Pez Cebra , Animales , Pez Cebra/genética , Larva/genética , Neuronas Motoras/fisiología , Canales Iónicos
4.
bioRxiv ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693470

RESUMEN

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.

5.
Cell Rep ; 2(4): 1002-13, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23063363

RESUMEN

Here, we describe the embryonic central nervous system expression of 5,000 GAL4 lines made using molecularly defined cis-regulatory DNA inserted into a single attP genomic location. We document and annotate the patterns in early embryos when neurogenesis is at its peak, and in older embryos where there is maximal neuronal diversity and the first neural circuits are established. We note expression in other tissues, such as the lateral body wall (muscle, sensory neurons, and trachea) and viscera. Companion papers report on the adult brain and larval imaginal discs, and the integrated data sets are available online (http://www.janelia.org/gal4-gen1). This collection of embryonically expressed GAL4 lines will be valuable for determining neuronal morphology and function. The 1,862 lines expressed in small subsets of neurons (<20/segment) will be especially valuable for characterizing interneuronal diversity and function, because although interneurons comprise the majority of all central nervous system neurons, their gene expression profile and function remain virtually unexplored.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/crecimiento & desarrollo , Bases de Datos Factuales , Drosophila/genética , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Femenino , Expresión Génica , Genes Reporteros , Internet , Masculino , Elementos Reguladores de la Transcripción , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA