Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 10(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35740425

RESUMEN

Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFß1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFß1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFß1 is strongly implicated in the vascular complications of DR.

2.
PLoS One ; 17(9): e0268590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36084029

RESUMEN

Chronic inflammation and blood-brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood-brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood-brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood-brain barrier dysfunction caused by inflammatory insults.


Asunto(s)
Lipopolisacáridos , Monoacilglicerol Lipasas , Animales , Ácido Araquidónico/metabolismo , Ciclooxigenasa 2 , Endocannabinoides/metabolismo , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/farmacología , Glicerol/metabolismo , Humanos , Lipopolisacáridos/farmacología , Ratones , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos , Prostaglandinas/metabolismo
3.
PLoS One ; 15(3): e0229850, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155191

RESUMEN

Reducing Amyloid ß (Aß) in the brain is of fundamental importance for advancing the therapeutics for Alzheimer`s disease. The endogenous metallopeptidase neprilysin (NEP) has been identified as one of the key Aß-degrading enzymes. Delivery of NEP to the brain by utilizing the Brain Shuttle (BS) transport system offers a promising approach for clearing central Aß. We fused the extracellular catalytic domain of NEP to an active or inactive BS module. The two BS-NEP constructs were used to investigate the pharmacokinetic/pharmacodynamics relationships in the blood and the cerebrospinal fluid (CSF) in dose-response and multiple dosing. As previously shown, NEP was highly effective at degrading Aß in blood but not in the CSF compartment after systemic administration. In contrast, the NEP with an active BS module led to a significant CSF exposure of BS-NEP, followed by substantial Aß reduction in CSF and brain parenchyma. Our data show that a BS module against the transferrin receptor facilitates the transport of an Aß degrading enzyme across the blood-brain barriers to efficiently reduce Aß levels in both CSF and brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Encéfalo/metabolismo , Neprilisina/farmacología , Proteínas Recombinantes de Fusión/farmacología , Péptidos beta-Amiloides/deficiencia , Animales , Barrera Hematoencefálica/metabolismo , Células HEK293 , Humanos , Neprilisina/líquido cefalorraquídeo , Neprilisina/farmacocinética , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/líquido cefalorraquídeo , Proteínas Recombinantes de Fusión/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA