Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 34: 102070, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38034030

RESUMEN

Intradermal delivery of DNA vaccines via electroporation (ID-EP) has shown clinical promise, but the use of needle electrodes is typically required to achieve consistent results. Here, delivery of a DNA vaccine targeting the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is achieved using noninvasive intradermal vacuum-EP (ID-VEP), which functions by pulling a small volume of skin tissue into a vacuum chamber containing noninvasive electrodes to perform EP at the injection site. Gene expression and immunogenicity correlated with EP parameters and vacuum chamber geometry in guinea pigs. ID-VEP generated potent humoral and cellular immune responses across multiple studies, while vacuum (without EP) greatly enhanced localized transfection but did not improve immunogenicity. Because EP was performed noninvasively, the only treatment site reaction observed was transient redness, and ID-VEP immune responses were comparable to a clinical needle-based ID-EP device. The ID-VEP delivery procedure is straightforward and highly repeatable, without any dependence on operator technique. This work demonstrates a novel, reliable, and needle-free delivery method for DNA vaccines.

2.
Vaccine ; 37(29): 3832-3839, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31174938

RESUMEN

The combination of optimized DNA constructs, improved formulations and advanced in vivo electroporation (EP) has been shown to generate potent and efficacious immune responses in the clinic. Needle-free jet injection has also been reported to improve DNA vaccine delivery over standard needle and syringe in clinical trials. Here we investigated the impact of combined jet injection and EP (Jet-EP) delivery on muscle transfection efficiency and DNA vaccine immunogenicity in rabbits and nonhuman primates (NHPs) compared to jet injection alone. Our results show that the addition of EP significantly enhanced in vivo DNA transfection efficiency of rabbit muscle over jet injection alone. Jet-EP delivery augmented the rate and magnitude of DNA vaccine induced humoral and cellular responses over jet injection alone in both rabbits and NHPs. Jet-EP delivery also resulted in higher proportions of polyfunctional antigen specific T cells producing IFNγ, IL-2, and/or TNFα. Elevated antibody levels were sustained nine months post immunization in NHPs immunized with a DNA vaccine using Jet-EP delivery, far outperforming jet delivery alone. Our results provide proof-of-concept that addition of advanced EP to needle-free jet injection delivery improves in vivo DNA transfection efficiency, increasing the magnitude, rate and duration of cellular and humoral immune responses to DNA vaccines. This combination likely has significant advantages in important vaccine and immunotherapy settings.


Asunto(s)
Anticuerpos Antivirales/sangre , Electroporación , Inyecciones Intradérmicas/métodos , Vacunación/métodos , Vacunas de ADN/administración & dosificación , Animales , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunogenicidad Vacunal , Inyecciones a Chorro , Cinética , Masculino , Primates/inmunología , Prueba de Estudio Conceptual , Conejos , Vacunación/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA