Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 31(10): 1036-1053, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28637693

RESUMEN

We recently identified pathogenic KIF1Bß mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted KIF1Bß in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bß is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. Moreover, pathogenic KIF1Bß mutations identified in neuroblastoma impair TRKA transport. Expression of neuronal differentiation markers is ablated in both KIF1Bß-deficient mouse neuroblasts and human neuroblastomas that lack KIF1Bß. Transcriptomic analyses show that unfavorable neuroblastomas resemble mouse sympathetic neuroblasts lacking KIF1Bß independent of MYCN amplification and the loss of genes neighboring KIF1B on chromosome 1p36. Thus, defective precursor cell differentiation, a common trait of aggressive childhood malignancies, is a pathogenic effect of KIF1Bß loss in neuroblastomas. Furthermore, neuropathy-associated KIF1Bß mutations impede cargo transport, providing a direct link between neuroblastomas and neurodegeneration.


Asunto(s)
Diferenciación Celular/genética , Cinesinas/genética , Cinesinas/metabolismo , Neuroblastoma/genética , Neuronas/citología , Receptor trkA/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Mutación , Neuroblastoma/fisiopatología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Células PC12 , Ratas , Transducción de Señal/genética , Sistema Nervioso Simpático/citología , Proteínas ras/genética
2.
Proc Natl Acad Sci U S A ; 116(31): 15550-15559, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31235578

RESUMEN

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.


Asunto(s)
Carcinogénesis/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patología , Glioblastoma/genética , Glioblastoma/patología , Ratones , Proteínas de Neoplasias/genética , Miosina Tipo IIA no Muscular/genética
3.
J Biol Chem ; 290(6): 3814-24, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25538243

RESUMEN

Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Sistema de Señalización de MAP Quinasas , Células Madre Neoplásicas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/fisiología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/farmacología , Receptor trkB/genética , Receptor trkC/genética
4.
Int J Cancer ; 139(6): 1195-201, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27084046

RESUMEN

Melanoma frequently metastasizes to the brain, with CNS involvement being clinically evident in ∼30% of patients (as high as 75% at autopsy). In ∼5% cases melanoma cells also metastasize to the leptomeninges, the sub-arachnoid space and cerebrospinal fluid (CSF). Patients with leptomeningeal melanoma metastases (LMM) have the worst prognosis and are characterized by rapid disease progression (mean survival 8-10 weeks) and a death from neurological causes. The recent years have seen tremendous progress in the development of targeted and immune therapies for melanoma that has translated into an increased survival benefit. Despite these gains, the majority of patients fail therapy and there is a suspicion that the brain and the leptomeninges are a "sanctuary" sites for melanoma cells that escape both targeted therapy and immunologic therapies. Emerging evidence suggests that (1) Cancer cells migrating to the CNS may have unique molecular properties and (2) the CNS/leptomeningeal microenvironment represents a pro-survival niche that influences therapeutic response. In this Mini-Review, we will outline the clinical course of LMM development and will describe how the intracranial immune and cellular microenvironments offer both opportunities and challenges for the successful management of this disease. We will further discuss the latest data demonstrating the potential use of BRAF inhibitors and immune therapy in the management of LMM, and will review future potential therapeutic strategies for the management of this most devastating complication of advanced melanoma.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia , Melanoma/patología , Neoplasias Meníngeas/secundario , Neoplasias Meníngeas/terapia , Terapia Molecular Dirigida , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Manejo de la Enfermedad , Progresión de la Enfermedad , Humanos , Melanoma/metabolismo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/mortalidad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo
5.
J Biol Chem ; 289(12): 8067-85, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24519935

RESUMEN

Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/patología , Glioma/metabolismo , Células Madre Neoplásicas/patología , Factores de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Glioma/genética , Glioma/patología , Humanos , Mutación , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Receptor de Factor de Crecimiento Nervioso/genética
6.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895402

RESUMEN

While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFß, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma. Highlights: • Resistance to non-microtubule spindle inhibitors limits their efficacy in glioblastoma and depends on STAT3.• Resistance goes hand in hand with development of therapy induced senescence (TIS).• Spindle inhibitor resistant glioblastomas consist of three cell subpopulations-proliferative, quiescent, and TIS-with proliferative cells sensitive and quiescent and TIS cells resistant.• TIS cells secrete TGFß, which induces proliferative cells to become quiescent, thereby expanding the population of resistant cells in a spindle inhibitor resistant glioblastoma• Treatment with a STAT3 inhibitor kills TIS cells and restores sensitivity to spindle inhibitors.

7.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746089

RESUMEN

We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights: MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.

8.
Cancer Control ; 20(4): 298-306, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24077406

RESUMEN

BACKGROUND: The development of brain metastases is common in patients with melanoma and is associated with a poor prognosis. Treating patients with melanoma brain metastases (MBMs) is a major therapeutic challenge. Standard approaches with conventional chemotherapy are disappointing, while surgery and radiotherapy have improved outcomes. METHODS: In this article, we discuss the biology of MBMs, briefly outline current treatment approaches, and emphasize novel and emerging therapies for MBMs. RESULTS: The mechanisms that underlie the metastases of melanoma to the brain are unknown; therefore, it is necessary to identify pathways to target MBMs. Most patients with MBMs have short survival times. Recent use of immune-based and targeted therapies has changed the natural history of metastatic melanoma and may be effective for the treatment of patients with MBMs. CONCLUSIONS: Developing a better understanding of the factors responsible for MBMs will lead to improved management of this disease. In addition, determining the optimal treatments for MBMs and how they can be optimized or combined with other therapies, along with appropriate patient selection, are challenges for the management of this disease.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Melanoma/patología , Melanoma/terapia , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Animales , Humanos
9.
Cell Rep ; 39(12): 110991, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732128

RESUMEN

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Asunto(s)
Antimitóticos , Glioblastoma , Animales , Antimitóticos/farmacología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Cinesinas , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
10.
J Biol Chem ; 285(26): 20358-68, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20421303

RESUMEN

During the development of the sympathetic nervous system, the p75 neurotrophin receptor (p75NTR) has a dual function: promoting survival together with TrkA in response to NGF, but inducing cell death upon binding pro or mature brain-derived neurotrophic factor (BDNF). Apoptotic signaling through p75NTR requires activation of the stress kinase, JNK. However, the receptor also undergoes regulated proteolysis, first by a metalloprotease, and then by gamma-secretase, in response to pro-apoptotic ligands and this is necessary for receptor mediated neuronal death (Kenchappa, R. S., Zampieri, N., Chao, M. V., Barker, P. A., Teng, H. K., Hempstead, B. L., and Carter, B. D. (2006) Neuron 50, 219-232). Hence, the relationship between JNK activation and receptor proteolysis remains to be defined. Here, we report that JNK3 activation is necessary for p75NTR cleavage; however, following release of the intracellular domain, there is a secondary activation of JNK3 that is cleavage dependent. Receptor proteolysis and apoptosis were prevented in sympathetic neurons from jnk3(-/-) mice, while activation of JNK by ectopic expression of MEKK1 induced p75NTR cleavage and cell death. Proteolysis of the receptor was not detected until 6 h after BDNF treatment, suggesting that JNK3 promotes cleavage through a transcriptional mechanism. In support of this hypothesis, BDNF up-regulated tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM17 mRNA and protein in wild-type, but not jnk3(-/-) sympathetic neurons. Down-regulation of TACE by RNA interference blocked BDNF-induced p75NTR cleavage and apoptosis, indicating that this metalloprotease is responsible for the initial processing of the receptor. Together, these results demonstrate that p75NTR-mediated activation of JNK3 is required for up-regulation of TACE, which promotes receptor proteolysis, leading to prolonged activation of JNK3 and subsequent apoptosis in sympathetic neurons.


Asunto(s)
Proteínas ADAM/metabolismo , Apoptosis , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Antracenos/farmacología , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/farmacología , Línea Celular , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Cinética , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 10 Activada por Mitógenos/genética , Factor de Crecimiento Nervioso/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores de Factor de Crecimiento Nervioso/genética , Ganglio Cervical Superior/citología , Regulación hacia Arriba
11.
J Cell Sci ; 122(Pt 18): 3351-7, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19706676

RESUMEN

Dimerization is recognized as a crucial step in the activation of many plasma membrane receptors. However, a growing number of receptors pre-exist as dimers in the absence of ligand, indicating that, although necessary, dimerization is not always sufficient for signaling. The p75 neurotrophin receptor (p75(NTR)) forms disulfide-linked dimers at the cell surface independently of ligand binding through Cys257 in its transmembrane domain. Here, we show that crosslinking of p75(NTR) dimers by cysteine-scanning mutagenesis results in constitutive, ligand-independent activity in several pathways that are normally engaged upon neurotrophin stimulation of native receptors. The activity profiles of different disulfide-crosslinked p75(NTR) mutants were similar but not identical, suggesting that different configurations of p75(NTR) dimers might be endowed with different functions. Interestingly, crosslinked p75(NTR) mutants did not mimic the effects of the myelin inhibitors Nogo or MAG, suggesting the existence of ligand-specific activation mechanisms. Together, these results support a conformational model of p75(NTR) activation by neurotrophins, and reveal a genetic approach to generate gain-of-function receptor variants with distinct functional profiles.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Disulfuros/metabolismo , Multimerización de Proteína , Receptor de Factor de Crecimiento Nervioso/química , Receptor de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Células COS , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ligandos , Datos de Secuencia Molecular , Proteínas Mutantes/efectos de los fármacos , Proteínas Mutantes/metabolismo , FN-kappa B/metabolismo , Factores de Crecimiento Nervioso/farmacología , Multimerización de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/metabolismo
12.
Cell Rep ; 37(8): 110054, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818553

RESUMEN

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.


Asunto(s)
Glioblastoma/genética , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/clasificación , Humanos , Isoenzimas/genética , Ratones , Oncogenes/genética , Proteína Quinasa C/genética , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología
13.
Neuron ; 50(2): 219-32, 2006 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-16630834

RESUMEN

The p75 neurotrophin receptor regulates neuronal survival, promoting it in some contexts yet activating apoptosis in others. The mechanism by which the receptor elicits these differential effects is poorly understood. Here, we demonstrate that p75 is cleaved by gamma-secretase in sympathetic neurons, specifically in response to proapoptotic ligands. This cleavage resulted in ubiquitination and subsequent nuclear translocation of NRIF, a DNA binding protein essential for p75-mediated apoptosis. Inhibition of gamma-secretase or expression of a mutant p75 resistant to this protease prevented receptor proteolysis, blocked NRIF nuclear entry, and prevented apoptosis. In contrast, overexpression of the p75 ICD resulted in NRIF nuclear accumulation and apoptosis. The receptor proteolysis and NRIF nuclear localization were also observed in vivo during naturally occurring cell death in the superior cervical ganglia. These results indicate that p75-mediated apoptosis requires gamma-secretase dependent release of its ICD, which facilitates nuclear translocation of NRIF.


Asunto(s)
Apoptosis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Sistema Nervioso Simpático/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Núcleo Celular/metabolismo , Células Cultivadas , Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Inmunohistoquímica , Inmunoprecipitación , Ligandos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas
14.
Sci Rep ; 10(1): 6524, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300151

RESUMEN

Glioblastoma, the most lethal primary brain cancer, is extremely proliferative and invasive. Tumor cells at tumor/brain-interface often exist behind a functionally intact blood-brain barrier (BBB), and so are shielded from exposure to therapeutic drug concentrations. An ideal glioblastoma treatment needs to engage targets that drive proliferation as well as invasion, with brain penetrant therapies. One such target is the mitotic kinesin KIF11, which can be inhibited with ispinesib, a potent molecularly-targeted drug. Although, achieving durable brain exposures of ispinesib is critical for adequate tumor cell engagement during mitosis, when tumor cells are vulnerable, for efficacy. Our results demonstrate that the delivery of ispinesib is restricted by P-gp and Bcrp efflux at BBB. Thereby, ispinesib distribution is heterogeneous with concentrations substantially lower in invasive tumor rim (intact BBB) compared to glioblastoma core (disrupted BBB). We further find that elacridar-a P-gp and Bcrp inhibitor-improves brain accumulation of ispinesib, resulting in remarkably reduced tumor growth and extended survival in a rodent model of glioblastoma. Such observations show the benefits and feasibility of pairing a potentially ideal treatment with a compound that improves its brain accumulation, and supports use of this strategy in clinical exploration of cell cycle-targeting therapies in brain cancers.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Cinesinas/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Quinazolinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Acridinas/química , Acridinas/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/genética , Glioblastoma/patología , Humanos , Cinesinas/genética , Ratones , Terapia Molecular Dirigida , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
iScience ; 23(12): 101802, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33299973

RESUMEN

Invasion and proliferation are defining phenotypes of cancer, and in glioblastoma blocking one stimulates the other, implying that effective therapy must inhibit both, ideally through a single target that is also dispensable for normal tissue function. The molecular motor myosin 10 meets these criteria. Myosin 10 knockout mice can survive to adulthood, implying that normal cells can compensate for its loss; its deletion impairs invasion, slows proliferation, and prolongs survival in murine models of glioblastoma. Myosin 10 deletion also enhances tumor dependency on the DNA damage and the metabolic stress responses and induces synthetic lethality when combined with inhibitors of these processes. Our results thus demonstrate that targeting myosin 10 is active against glioblastoma by itself, synergizes with other clinically available therapeutics, may have acceptable side effects in normal tissues, and has potential as a heretofore unexplored therapeutic approach for this disease.

16.
J Neurosci ; 28(39): 9870-9, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18815271

RESUMEN

Seizure-induced damage elicits a loss of hippocampal neurons mediated to a great extent by the p75 neurotrophin receptor (NTR). Proneurotrophins, which are potent apoptosis-inducing ligands for p75(NTR), were increased in the hippocampus, particularly in astrocytes, by pilocarpine-induced seizures; and infusion of anti-pro-NGF dramatically attenuated neuronal loss after seizures. The p75(NTR) is expressed in many different cell types in the nervous system, and can mediate a variety of different cellular functions by recruiting specific intracellular binding proteins to activate distinct signaling pathways. In this study, we demonstrate that neurotrophin receptor-interacting factor (NRIF) mediates apoptotic signaling via p75(NTR) in hippocampal neurons in vitro and in vivo. After seizure-induced injury, NRIF(-/-) mice showed an increase in p75(NTR) expression in the hippocampus; however, these neurons failed to undergo apoptosis in contrast to wild-type mice. Treatment of cultured hippocampal neurons with proneurotrophins induced association of NRIF with p75(NTR) and subsequent translocation of NRIF to the nucleus, which was dependent on cleavage of the receptor. Neurons lacking NRIF were resistant to p75(NTR)-mediated apoptosis in vitro and in vivo. In addition, we demonstrate some mechanistic differences in p75(NTR) signaling in hippocampal neurons compared with other cell types. Overall, these studies demonstrate the requirement for NRIF to signal p75(NTR)-mediated apoptosis of hippocampal neurons and that blocking pro-NGF can inhibit neuronal loss after seizures.


Asunto(s)
Apoptosis/fisiología , Hipocampo/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor de Crecimiento Nervioso/líquido cefalorraquídeo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Precursores de Proteínas/líquido cefalorraquídeo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Convulsiones/patología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética/métodos , Embrión de Mamíferos , Femenino , Fluoresceínas , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Compuestos Orgánicos/metabolismo , Pilocarpina , Embarazo , Ratas , Convulsiones/inducido químicamente , Factores de Tiempo
17.
J Mol Neurosci ; 38(2): 152-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18677445

RESUMEN

Cholesterol is a critical component of neuronal membranes, required for normal signal transduction. We showed previously that adult hippocampal neurons co-express high levels of cholesterogenic enzymes, and that their expression is under the control of the p75 neurotrophin receptor (p75NTR). Most of the cellular effects of p75NTR are mediated via interacting proteins, including neurotrophin receptor interacting factor (NRIF). In this study, we tested the hypothesis that p75NTR-dependent regulation of cholesterol and lipid biosynthesis genes is mediated by NRIF. We found that in vitro down regulation of NRIF expression decreased the mRNA for two main cholesterogenic enzymes, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr; EC 2.3.3.10) and 7-dehydrocholesterol reductase (Dhcr7; EC 1.3.1.21). Further analyses revealed that NRIF-dependent and Dhcr7-dependent transcriptional changes show a high degree of overlap, and that NRIF reduction resulted in reduced expression of sterol-sensing domain protein SCAP, followed by a decrease in mRNA levels of SRE-motif containing genes (HMGCR, FASN, SREBP2, S1P, and SQS1). Finally, a reduction in cholesterol biosynthesis-related gene expression was also observed in hippocampal tissue of mice with NRIF deletion. Our combined in vitro and in vivo studies suggest that hippocampal neuronal cholesterol biosynthesis is regulated through the p75NTR interacting factor NRIF.


Asunto(s)
Acilcoenzima A/genética , Colesterol/biosíntesis , Regulación Enzimológica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Acilcoenzima A/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Neuroblastoma , Neuronas/metabolismo , Neuronas/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo
18.
Neurochem Int ; 51(1): 37-46, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17512091

RESUMEN

Oxidative stress, excitotoxicity and mitochondrial dysfunction play synergistic roles in neurodegeneration. Maintenance of thiol homeostasis is important for normal mitochondrial function and dysregulation of protein thiol homeostasis by oxidative stress leads to mitochondrial dysfunction and neurodegeneration. We examined the critical roles played by the antioxidant, non-protein thiol, glutathione and related enzyme, glutaredoxin in maintaining mitochondrial function during excitotoxicity caused by beta-N-oxalyl amino-L-alanine (L-BOAA), the causative factor of neurolathyrism, a motor neuron disease involving the pyramidal system. L-BOAA causes loss of GSH and inhibition of mitochondrial complex I in lumbosacral cord of male mice through oxidation of thiol groups, while female mice are resistant. Reducing GSH levels in female mice CNS by pretreatment with diethyl maleate or L-propargyl glycine did not result in inhibition of complex I activity, unlike male mice. Further, treatment of female mice depleted of GSH with L-BOAA did not induce inhibition of complex I indicating that GSH levels were not critical for maintaining complex I activity in female mice unlike their male counterpart. Glutaredoxin, a thiol disulfide oxidoreductase helps maintain redox status of proteins and downregulation of glutaredoxin results in loss of mitochondrial complex I activity. Female mice express higher levels of glutaredoxin in certain CNS regions and downregulation of glutaredoxin using antisense oligonucleotides sensitizes them to L-BOAA toxicity seen as mitochondrial complex I loss. Ovariectomy downregulates glutaredoxin and renders female mice vulnerable to L-BOAA toxicity as evidenced by activation of AP1, loss of GSH and complex I activity indicating the important role of glutaredoxin in neuroprotection. Estrogen protects against mitochondrial dysfunction caused by excitotoxicity by maintaining cellular redox status through higher constitutive expression of glutaredoxin in the CNS. Therapeutic interventions designed to upregulate glutaredoxin may offer neuroprotection against excitotoxicity in motor neurons.


Asunto(s)
Latirismo/metabolismo , Enfermedades Mitocondriales/metabolismo , Degeneración Nerviosa/metabolismo , Neurotoxinas/farmacología , Estrés Oxidativo/fisiología , Oxidorreductasas/metabolismo , Aminoácidos Diaminos/toxicidad , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Estrógenos/metabolismo , Femenino , Glutarredoxinas , Glutatión/metabolismo , Latirismo/fisiopatología , Masculino , Ratones , Enfermedades Mitocondriales/inducido químicamente , Enfermedades Mitocondriales/fisiopatología , Enfermedad de la Neurona Motora/inducido químicamente , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/fisiopatología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/fisiopatología , Fármacos Neuroprotectores/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Caracteres Sexuales , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
19.
Sci Rep ; 7(1): 9350, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839258

RESUMEN

Tumor hypoxia is an established facilitator of survival adaptation and mesenchymal transformation in glioblastoma (GBM). The underlying mechanisms that direct hypoxia-mediated survival in GBM habitats are unclear. We previously identified BIRC3 as a mediator of therapeutic resistance in GBM to standard temozolomide (TMZ) chemotherapy and radiotherapy (RT). Here we report that BIRC3 is a biomarker of the hypoxia-mediated adaptive mesenchymal phenotype of GBM. Specifically, in the TCGA dataset elevated BIRC3 gene expression was identified as a superior and selective biomarker of mesenchymal GBM versus neural, proneural and classical subtypes. Further, BIRC3 protein was highly expressed in the tumor cell niches compared to the perivascular niche across multiple regions in GBM patient tissue microarrays. Tumor hypoxia was found to mechanistically induce BIRC3 expression through HIF1-alpha signaling in GBM cells. Moreover, in human GBM xenografts robust BIRC3 expression was noted within hypoxic regions of the tumor. Importantly, selective inhibition of BIRC3 reversed therapeutic resistance of GBM cells to RT in hypoxic microenvironments through enhanced activation of caspases. Collectively, we have uncovered a novel role for BIRC3 as a targetable biomarker and mediator of hypoxia-driven habitats in GBM.


Asunto(s)
Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Glioblastoma/genética , Hipoxia/genética , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Biomarcadores , Caspasas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Pronóstico , Tolerancia a Radiación/genética , Microambiente Tumoral/genética
20.
Brain Res ; 1125(1): 176-84, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17109834

RESUMEN

beta-N-oxalyl-amino-L-alanine, (L-BOAA), an excitatory amino acid, acts as an agonist of the AMPA subtype of glutamate receptors. It inhibits mitochondrial complex I in motor cortex and lumbosacral cord of male mice through oxidation of critical thiol groups, and glutaredoxin, a thiol disulfide oxido-reductase, helps maintain integrity of complex I. Since incidence of neurolathyrism is less common in women, we examined the mechanisms underlying the gender-related effects. Inhibition of complex I activity by L-BOAA was seen in male but not female mice. Pretreatment of female mice with estrogen receptor antagonist ICI 182,780 or tamoxifen sensitizes them to L-BOAA toxicity, indicating that the neuroprotection is mediated by estrogen receptors. L-BOAA triggers glutathione (GSH) loss in male mice but not in female mice, and only a small but significant increase in oxidized glutathione (GSSG) was seen in females. As a consequence, up-regulation of gamma-glutamyl cysteinyl synthase (the rate-limiting enzyme in glutathione synthesis) was seen only in male mouse CNS but not in females. Both glutathione reductase and glutaredoxin that reduce oxidized glutathione and protein glutathione mixed disulfides, respectively, were constitutively expressed at higher levels in females. Furthermore, glutaredoxin activity in female mice was down-regulated by estrogen antagonist indicating its regulation by estrogen receptor. The higher constitutive expression of glutathione reductase and glutaredoxin could potentially confer neuroprotection to female mice.


Asunto(s)
Aminoácidos Diaminos/farmacología , Sistema Nervioso Central/efectos de los fármacos , Regulación hacia Abajo/fisiología , Complejo I de Transporte de Electrón/metabolismo , Aminoácidos Excitadores/farmacología , Oxidorreductasas/metabolismo , Receptores de Estrógenos/fisiología , Animales , Northern Blotting/métodos , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Interacciones Farmacológicas , Antagonistas de Estrógenos/farmacología , Estrógenos/farmacología , Femenino , Glutarredoxinas , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Inmunohistoquímica/métodos , Técnicas In Vitro , Masculino , Ratones , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidorreductasas/genética , Receptores de Estrógenos/antagonistas & inhibidores , Factores Sexuales , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA