Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764425

RESUMEN

Recently, a high-throughput screen of 1900 clinically used drugs identified masitinib, an orally bioavailable tyrosine kinase inhibitor, as a potential treatment for COVID-19. Masitinib acts as a broad-spectrum inhibitor for human coronaviruses, including SARS-CoV-2 and several of its variants. In this work, we rely on atomistic molecular dynamics simulations with advanced sampling methods to develop a deeper understanding of masitinib's mechanism of Mpro inhibition. To improve the inhibitory efficiency and to increase the ligand selectivity for the viral target, we determined the minimal portion of the molecule (fragment) that is responsible for most of the interactions that arise within the masitinib-Mpro complex. We found that masitinib forms highly stable and specific H-bond interactions with Mpro through its pyridine and aminothiazole rings. Importantly, the interaction with His163 is a key anchoring point of the inhibitor, and its perturbation leads to ligand unbinding within nanoseconds. Based on these observations, a small library of rationally designed masitinib derivatives (M1-M5) was proposed. Our results show increased inhibitory efficiency and highly reduced cytotoxicity for the M3 and M4 derivatives compared to masitinib.


Asunto(s)
Benzamidas , Piperidinas , Piridinas , Humanos , Ligandos , Tiazoles/farmacología , Antivirales/farmacología , Inhibidores de Proteasas
2.
Biosens Bioelectron ; 225: 115089, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736159

RESUMEN

Study of spatial and temporal aspects of signaling between individual cells is essential in understanding development, the immune response, and host-pathogen interactions. We present an automated high-throughput microfluidic platform that chemically stimulates immune cells to initiate cytokine secretion, and controls the formation of signal gradients that activate neighboring cell populations. Furthermore, our system enables controlling the cell type and density based on distance, and retrieval of cells from different regions for gene expression analysis. Our device performs these tasks in 192 independent chambers to simultaneously test different co-culture conditions. We demonstrate these capabilities by creating various cellular communication scenarios between macrophages and fibroblasts in vitro. We find that spatial distribution of macrophages and heterogeneity in cytokine secretion determine spatiotemporal gene expression responses. Furthermore, we describe how gene expression dynamics depend on a cell's distance from the signaling source. Our device addresses key challenges in the study of cell-to-cell signaling, and provides high-throughput and automated analysis over a wide range of co-culture conditions.


Asunto(s)
Técnicas Biosensibles , Técnicas de Cocultivo , Transducción de Señal/genética , Microfluídica , Citocinas
3.
ACS Cent Sci ; 9(3): 427-439, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968540

RESUMEN

Stimulation of the innate immune system is crucial in both effective vaccinations and immunotherapies. This is often achieved through adjuvants, molecules that usually activate pattern recognition receptors (PRRs) and stimulate two innate immune signaling pathways: the nuclear factor kappa-light-chain-enhancer of activated B-cells pathway (NF-κB) and the interferon regulatory factors pathway (IRF). Here, we demonstrate the ability to alter and improve adjuvant activity via the addition of small molecule "immunomodulators". By modulating signaling activity instead of receptor binding, these molecules allow the customization of select innate responses. We demonstrate both inhibition and enhancement of the products of the NF-κB and IRF pathways by several orders of magnitude. Some modulators apply generally across many receptors, while others focus specifically on individual receptors. Modulators boost correlates of a protective immune responses in a commercial flu vaccine model and reduced correlates of reactogenicity in a typhoid vaccine model. These modulators have a range of applications: from adjuvanticity in prophylactics to enhancement of immunotherapy.

4.
Cell Rep ; 40(7): 111159, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977475

RESUMEN

Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-throughput microfluidic live-cell analysis, we systematically profile the NF-κB response to different signal sequences in single cells. We find that NF-κB dynamics store the short-term history of received signals: depending on the prior pathogenic or cytokine signal, the NF-κB response to subsequent stimuli varies from no response to full activation. Using information theory, we reveal that these stimulus-dependent changes in the NF-κB response encode and reflect information about the identity and dose of the prior stimulus. Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular responses in complex dynamic environments.


Asunto(s)
FN-kappa B , Transducción de Señal , Simulación por Computador , Citocinas/metabolismo , Perfilación de la Expresión Génica , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA