Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Econom Stat ; 25: 66-86, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36620476

RESUMEN

Obesity is a highly heritable condition that affects increasing numbers of adults and, concerningly, of children. However, only a small fraction of its heritability has been attributed to specific genetic variants. These variants are traditionally ascertained from genome-wide association studies (GWAS), which utilize samples with tens or hundreds of thousands of individuals for whom a single summary measurement (e.g., BMI) is collected. An alternative approach is to focus on a smaller, more deeply characterized sample in conjunction with advanced statistical models that leverage longitudinal phenotypes. Novel functional data analysis (FDA) techniques are used to capitalize on longitudinal growth information from a cohort of children between birth and three years of age. In an ultra-high dimensional setting, hundreds of thousands of single nucleotide polymorphisms (SNPs) are screened, and selected SNPs are used to construct two polygenic risk scores (PRS) for childhood obesity using a weighting approach that incorporates the dynamic and joint nature of SNP effects. These scores are significantly higher in children with (vs. without) rapid infant weight gain-a predictor of obesity later in life. Using two independent cohorts, it is shown that the genetic variants identified in very young children are also informative in older children and in adults, consistent with early childhood obesity being predictive of obesity later in life. In contrast, PRSs based on SNPs identified by adult obesity GWAS are not predictive of weight gain in the cohort of young children. This provides an example of a successful application of FDA to GWAS. This application is complemented with simulations establishing that a deeply characterized sample can be just as, if not more, effective than a comparable study with a cross-sectional response. Overall, it is demonstrated that a deep, statistically sophisticated characterization of a longitudinal phenotype can provide increased statistical power to studies with relatively small sample sizes; and shows how FDA approaches can be used as an alternative to the traditional GWAS.

2.
Res Sq ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045390

RESUMEN

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

3.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37987017

RESUMEN

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA