Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 102(2): 261-279, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35513125

RESUMEN

Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Heparina , Proteínas Klotho , Insuficiencia Renal Crónica , Animales , Cardiomegalia , Glucuronidasa/metabolismo , Heparina/metabolismo , Humanos , Proteínas Klotho/metabolismo , Ratones , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia
2.
Am J Transplant ; 22(11): 2548-2559, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35801504

RESUMEN

Ischemia-reperfusion injury is a major cause of acute kidney injury. Many cytokines are involved in the pathogenesis of renal ischemia-reperfusion injury. IL24 is a member of the IL10 family and has gained importance because of its apoptosis-inducing effects in tumor disease besides its immunoregulative function. Littles is known about the role of IL24 in kidney disease. Using a mouse model, we found that IL24 is upregulated in the kidney after renal ischemia-reperfusion injury and that tubular epithelial cells and infiltrating inflammatory cells are the source of IL24. Mice lacking IL24 are protected from renal injury and inflammation. Cell culture studies showed that IL24 induces apoptosis in renal tubular epithelial cells, which is accompanied by an increased endoplasmatic reticulum stress response. Moreover, IL24 induces robust expression of endogenous IL24 in tubular cells, fostering ER-stress and apoptosis. In kidney transplant recipients with delayed graft function and patients at high risk to develop acute kidney injury after cardiac surgery IL24 is upregulated in the kidney and serum. Taken together, IL24 can serve as a biomarker, plays an important mechanistic role involving both extracellular and intracellular targets, and is a promising therapeutic target in patients at risk of or with ischemia-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Animales , Ratones , Ratones Endogámicos C57BL , Lesión Renal Aguda/etiología , Daño por Reperfusión/metabolismo , Riñón/patología , Apoptosis , Interleucinas/metabolismo , Células Epiteliales/metabolismo
3.
Curr Osteoporos Rep ; 19(5): 500-509, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34331667

RESUMEN

PURPOSE OF REVIEW: Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS: Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Proteínas de la Matriz Extracelular/fisiología , Fosfoproteínas/fisiología , Animales , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/patología , Humanos , Ratones , Ratas
4.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L141-L154, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042083

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia that mainly affects the elderly. Several reports have demonstrated that aging is involved in the underlying pathogenic mechanisms of IPF. α-Klotho (KL) has been well characterized as an "age-suppressing" hormone and can provide protection against cellular senescence and oxidative stress. In this study, KL levels were assessed in human plasma and primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF-FB) and in lung tissue from mice exposed to bleomycin, which showed significant downregulation when compared with controls. Conversely, transgenic mice overexpressing KL were protected against bleomycin-induced lung fibrosis. Treatment of human lung fibroblasts with recombinant KL alone was not sufficient to inhibit transforming growth factor-ß (TGF-ß)-induced collagen deposition and inflammatory marker expression. Interestingly, fibroblast growth factor 23 (FGF23), a proinflammatory circulating protein for which KL is a coreceptor, was upregulated in IPF and bleomycin lungs. To our surprise, FGF23 and KL coadministration led to a significant reduction in fibrosis and inflammation in IPF-FB; FGF23 administration alone or in combination with KL stimulated KL upregulation. We conclude that in IPF downregulation of KL may contribute to fibrosis and inflammation and FGF23 may act as a compensatory antifibrotic and anti-inflammatory mediator via inhibition of TGF-ß signaling. Upon restoration of KL levels, the combination of FGF23 and KL leads to resolution of inflammation and fibrosis. Altogether, these data provide novel insight into the FGF23/KL axis and its antifibrotic/anti-inflammatory properties, which opens new avenues for potential therapies in aging-related diseases like IPF.


Asunto(s)
Lesión Pulmonar Aguda/patología , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Glucuronidasa/genética , Fibrosis Pulmonar Idiopática/genética , Transducción de Señal/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Anciano , Animales , Bleomicina/administración & dosificación , Estudios de Casos y Controles , Colágeno/antagonistas & inhibidores , Colágeno/genética , Colágeno/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glucuronidasa/metabolismo , Glucuronidasa/farmacología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pruebas de Función Renal , Proteínas Klotho , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Cultivo Primario de Células , Pruebas de Función Respiratoria , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/farmacología
5.
Kidney Int ; 92(3): 757-764, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28709641

RESUMEN

Acute cellular renal allograft rejection (AR) frequently occurs after kidney transplantations. It is a sterile T-cell mediated inflammation leading to increased local glucose metabolism. Here we demonstrate in an allogeneic model of Brown Norway rat kidneys transplanted into uninephrectomized Lewis rats the successful implementation of the recently developed glucose chemical exchange saturation transfer (glucoCEST) magnetic resonance imaging. This technique is a novel method to assess and differentiate AR. Renal allografts undergoing AR showed significantly increased glucoCEST contrast ratios of cortex to medulla of 1.61 compared to healthy controls (1.02), syngeneic Lewis kidney to Lewis rat transplants without rejection (0.92), kidneys with ischemia reperfusion injury (0.99) and kidneys affected by cyclosporine A toxicity (1.10). Receiver operating characteristic curve analysis showed an area under the curve value of 0.92, and the glucoCEST contrast ratio predicted AR with a sensitivity of 100% and a specificity of 69% at a threshold level over 1.08. In defined animal models of kidney injuries, the glucoCEST contrast ratios of cortex to medulla correlated positively with mRNA expression levels of T-cell markers (CD3, CD4, CD8a/b), but did not correlate to impaired renal perfusion. Thus, the glucoCEST parameter may be valuable for the assessment and follow up treatment of AR.


Asunto(s)
Aloinjertos/diagnóstico por imagen , Rechazo de Injerto/diagnóstico por imagen , Trasplante de Riñón/efectos adversos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Daño por Reperfusión/diagnóstico por imagen , Aloinjertos/inmunología , Aloinjertos/patología , Animales , Complejo CD3/metabolismo , Antígenos CD4/metabolismo , Antígenos CD8 , Medios de Contraste , Ciclosporina/toxicidad , Modelos Animales de Enfermedad , Glucosa/administración & dosificación , Glucosa/metabolismo , Rechazo de Injerto/inducido químicamente , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Humanos , Riñón/inmunología , Riñón/patología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas Lew , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trasplante Homólogo/efectos adversos
6.
Basic Res Cardiol ; 110(3): 30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893874

RESUMEN

Chronic kidney disease (CKD) is associated with an increased risk of heart failure (HF). Elevated plasma concentrations of soluble Flt-1 (sFlt-1) have been linked to cardiovascular disease in CKD patients, but whether sFlt-1 contributes to HF in CKD is still unknown. To provide evidence that concludes a pathophysiological role of sFlt-1 in CKD-associated HF, we measured plasma sFlt-1 concentrations in 586 patients with angiographically documented coronary artery disease and renal function classified according to estimated glomerular filtration rate (eGFR). sFlt-1 concentrations correlated negatively with eGFR and were associated with signs of heart failure, based on New York Heart Association functional class and reduced left ventricular ejection fraction (LVEF), and early mortality. Additionally, rats treated with recombinant sFlt-1 showed a 15 % reduction in LVEF and a 29 % reduction in cardiac output compared with control rats. High sFlt-1 concentrations were associated with a 15 % reduction in heart capillary density (number of vessels/cardiomyocyte) and a 24 % reduction in myocardial blood volume. Electron microscopy and histological analysis revealed mitochondrial damage and interstitial fibrosis in the hearts of sFlt-1-treated, but not control rats. In 5/6-nephrectomised rats, an animal model of CKD, sFlt-1 antagonism with recombinant VEGF121 preserved heart microvasculature and significantly improved heart function. Overall, these findings suggest that a component of cardiovascular risk in CKD patients could be directly attributed to sFlt-1. Assessment of patients with CKD confirmed that sFlt-1 concentrations were inversely correlated with renal function, while studies in rats suggested that sFlt-1 may link microvascular disease with HF in CKD.


Asunto(s)
Insuficiencia Cardíaca/etiología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Microvasos/patología , Ratas , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Nephrol Dial Transplant ; 29(11): 2028-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24875663

RESUMEN

BACKGROUND: Activation of fibroblast growth factor receptor (FGFR)-dependent signalling by FGF23 may contribute to the complex pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease (CKD). Pan FGFR blockade by PD173074 prevented development of LVH in the 5/6 nephrectomy rat model of CKD, but its ability to treat and reverse established LVH is unknown. METHODS: CKD was induced in rats by 5/6 nephrectomy. Two weeks later, rats began treatment with vehicle (0.9% NaCl) or PD173074, 1 mg/kg once-daily for 3 weeks. Renal function was determined by urine and blood analyses. Left ventricular (LV) structure and function were determined by echocardiography, histopathology, staining for myocardial fibrosis (Sirius-Red) and investigating cardiac gene expression profiles by real-time PCR. RESULTS: Two weeks after inducing CKD by 5/6 nephrectomy, rats manifested higher (mean ± SEM) systolic blood pressure (208 ± 4 versus 139 ± 3 mmHg; P < 0.01), serum FGF23 levels (1023 ± 225 versus 199 ± 9 pg/mL; P < 0.01) and LV mass (292 ± 9 versus 220 ± 3 mg; P < 0.01) when compared with sham-operated animals. Thereafter, 3 weeks of treatment with PD173074 compared with vehicle did not significantly change blood pressure, kidney function or metabolic parameters, but significantly reduced LV mass (230 ± 14 versus 341 ± 33 mg; P < 0.01), myocardial fibrosis (2.5 ± 0.7 versus 5.4 ± 0.95% staining/field; P < 0.01) and cardiac expression of genes associated with pathological LVH, while significantly increasing ejection fraction (18 versus 2.5% post-treatment increase; P < 0.05). CONCLUSIONS: FGFR blockade improved cardiac structure and function in 5/6 nephrectomy rats with previously established LVH. These data support FGFR activation as a potentially modifiable, blood pressure-independent molecular mechanism of LVH in CKD.


Asunto(s)
Ventrículos Cardíacos/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Pirimidinas/uso terapéutico , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Insuficiencia Renal Crónica/complicaciones , Función Ventricular Izquierda/fisiología , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/fisiopatología , Inyecciones Intraperitoneales , Masculino , Pirimidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Función Ventricular Izquierda/efectos de los fármacos
8.
JCI Insight ; 8(24)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943605

RESUMEN

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Osteomalacia , Animales , Ratones , Calcificación Fisiológica/genética , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Factores de Crecimiento de Fibroblastos , Hipofosfatemia/genética , Ratones Noqueados , Minerales/metabolismo , Osteomalacia/genética , Osteomalacia/metabolismo
9.
Eur Heart J ; 32(15): 1935-45, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21138940

RESUMEN

AIMS: Chronic kidney disease is directly associated with cardiovascular complications. Heart remodelling, including fibrosis, hypertrophy, and decreased vascularization, is frequently present in renal diseases. Our objective was to investigate the impact of calcineurin inhibitors (CNI) on cardiac remodelling and function in a rat model of renal disease. METHODS AND RESULTS: Male Sprague Dawley rats were divided into six groups: sham-operated rats, 5/6 nephrectomized rats (Nx) treated with vehicle, CNI (cyclosporine A 5.0 or 7.5, or tacrolimus 0.5 mg/kg/day) or hydralazine (20 mg/kg twice a day) for 14 days, starting on the day of surgery. Creatinine clearance was significantly lower and blood pressure significantly higher in Nx rats when compared with controls. Morphological and echocardiographic analyses revealed increased left ventricular hypertrophy and decreased number of capillaries in Nx rats. Treatment with CNI affected neither the renal function nor the blood pressure, but prevented the development of cardiac hypertrophy and improved vascularization. In addition, regional blood volume improved as confirmed by contrast agent-based echocardiography. Hydralazine treatment did not avoid heart remodelling in this model. Gene expression analysis verified a decrease in hypertrophic genes in the heart of CNI-treated rats, while pro-angiogenic and stem cell-related genes were upregulated. Moreover, mobilization of stem/progenitor cells was increased through manipulation of the CD26/SDF-1 system. CONCLUSION: We conclude from our studies that CNI-treatment significantly prevented cardiac remodelling and improved heart function in Nx rats without affecting renal function and blood pressure. This sheds new light on possible therapeutic strategies for renal patients at high cardiovascular risk.


Asunto(s)
Inhibidores de la Calcineurina , Ciclosporina/uso terapéutico , Cardiopatías/prevención & control , Inmunosupresores/uso terapéutico , Enfermedades Renales/complicaciones , Tacrolimus/uso terapéutico , Animales , Enfermedad Crónica , Hipertrofia Ventricular Izquierda/prevención & control , Masculino , Nefrectomía , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular/efectos de los fármacos
10.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302487

RESUMEN

Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here, we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia, and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia, and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.


Asunto(s)
Anemia , Hiperfosfatemia , Anemia/complicaciones , Animales , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hiperfosfatemia/complicaciones , Inflamación , Ratones , Músculo Esquelético/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos
11.
Sci Rep ; 12(1): 7326, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513431

RESUMEN

Fibroblast growth factor (FGF) 21, a hormone that increases insulin sensitivity, has shown promise as a therapeutic agent to improve metabolic dysregulation. Here we report that FGF21 directly targets cardiac myocytes by binding ß-klotho and FGF receptor (FGFR) 4. In combination with high glucose, FGF21 induces cardiac myocyte growth in width mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. While short-term FGF21 elevation can be cardio-protective, we find that in type 2 diabetes (T2D) in mice, where serum FGF21 levels are elevated, FGFR4 activation induces concentric cardiac hypertrophy. As T2D patients are at risk for heart failure with preserved ejection fraction (HFpEF), we propose that induction of concentric hypertrophy by elevated FGF21-FGFR4 signaling may constitute a novel mechanism promoting T2D-associated HFpEF such that FGFR4 blockade might serve as a cardio-protective therapy in T2D. In addition, potential adverse cardiac effects of FGF21 mimetics currently in clinical trials should be investigated.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Animales , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Volumen Sistólico
12.
Cells ; 10(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944007

RESUMEN

In the context of transplantation, complement activation is associated with poor prognosis and outcome. While complement activation in antibody-mediated rejection is well-known, less is known about complement activation in acute T cell-mediated rejection (TCMR). There is increasing evidence that complement contributes to the clearance of apoptotic debris and tissue repair. In this regard, we have analysed published human kidney biopsy transcriptome data clearly showing upregulated expression of complement factors in TCMR. To clarify whether and how the complement system is activated early during acute TCMR, experimental syngeneic and allogeneic renal transplantations were performed. Using an allogeneic rat renal transplant model, we also observed upregulation of complement factors in TCMR in contrast to healthy kidneys and isograft controls. While staining for C4d was positive, staining with a C3d antibody showed no C3d deposition. FACS analysis of blood showed the absence of alloantibodies that could have explained the C4d deposition. Gene expression pathway analysis showed upregulation of pro-apoptotic factors in TCMR, and apoptotic endothelial cells were detected by ultrastructural analysis. Monocytes/macrophages were found to bind to and phagocytise these apoptotic cells. Therefore, we conclude that early C4d deposition in TCMR may be relevant to the clearance of apoptotic cells.


Asunto(s)
Apoptosis , Complemento C4b/metabolismo , Trasplante de Riñón , Fragmentos de Péptidos/metabolismo , Animales , Biopsia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Riñón/patología , Riñón/ultraestructura , Masculino , Ratas Endogámicas BN , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Transcriptoma/genética , Trasplante Homólogo
13.
Sci Rep ; 11(1): 12062, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103575

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle weakness. Skeletal muscle is a prime source for biomarker discovery since it is one of the earliest sites to manifest disease pathology. From a prior RNA sequencing project, we identified FGF23 as a potential muscle biomarker in ALS. Here, we validate this finding with a large collection of ALS muscle samples and found a 13-fold increase over normal controls. FGF23 was also increased in the SOD1G93A mouse, beginning at a very early stage and well before the onset of clinical symptoms. FGF23 levels progressively increased through end-stage in the mouse. Immunohistochemistry of ALS muscle showed prominent FGF23 immunoreactivity in the endomysial connective tissue and along the muscle membrane and was significantly higher around grouped atrophic fibers compared to non-atrophic fibers. ELISA of plasma samples from the SOD1G93A mouse showed an increase in FGF23 at end-stage whereas no increase was detected in a large cohort of ALS patients. In conclusion, FGF23 is a novel muscle biomarker in ALS and joins a molecular signature that emerges in very early preclinical stages. The early appearance of FGF23 and its progressive increase with disease progression offers a new direction for exploring the molecular basis and response to the underlying pathology of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Biomarcadores/sangre , Factores de Crecimiento de Fibroblastos/sangre , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Superóxido Dismutasa-1/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Biomarcadores/metabolismo , Biopsia , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Persona de Mediana Edad , Superóxido Dismutasa-1/metabolismo , Regulación hacia Arriba , Adulto Joven
14.
Am J Respir Cell Mol Biol ; 42(4): 498-505, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19520916

RESUMEN

The epithelial sodium channel (ENaC) mediates the first step in Na+ reabsorption in epithelial cells such as kidney, colon, and airways and may consist of four homologous subunits (alpha, beta, gamma, delta). Predominantly, the alpha-subunit is expressed in these epithelia, and it usually forms functional channels with the beta- and gamma-subunits. The delta-subunit was first found in human brain and kidney, but the expression was also detected in human cell lines of lung, pancreatic, and colonic origin. When co-expressed with beta and gamma accessory subunits in heterologous systems, the two known isoforms of the delta-ENaC subunit (delta1 and delta2) can build amiloride-sensitive Na+ channels. In the present study we demonstrate the expression and function of the delta-subunit in human nasal epithelium (HNE). We cloned and sequenced the full-length cDNA of the delta-ENaC subunit and were able to show that in nasal tissue at least isoform 1 is expressed. Furthermore, we performed Western blot analyses and compared the cell surface expression of the delta-subunit with the classically expressed alpha-subunit by using immunofluorescence experiments. Thereby, we could show that the quantity of both subunits is almost similar. In addition, we show the functional expression of the delta-ENaC subunit with measurements in modified Ussing chambers, and demonstrate that in HNE a large portion of the Na+ transport is mediated by the delta-ENaC subunit. Therefore, we suppose that the delta-subunit may possess an important regulatory function and might interact with other ENaC subunits or members of the DEG/ENaC family in the human respiratory epithelium.


Asunto(s)
Canales Epiteliales de Sodio/biosíntesis , Regulación de la Expresión Génica/fisiología , Mucosa Nasal/metabolismo , Secuencia de Bases , Células Cultivadas , Clonación Molecular , Canales Epiteliales de Sodio/genética , Humanos
15.
Contrast Media Mol Imaging ; 2019: 3568067, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31093027

RESUMEN

To date, allogeneic kidney transplantation remains the best available therapeutic option for patients with end-stage renal disease regarding overall survival and quality of life. Despite the advancements in immunosuppressive drugs and protocols, episodes of acute allograft rejection, a sterile inflammatory process, continue to endanger allograft survival. Since effective treatment for acute rejection episodes is available, instant diagnosis of this potentially reversible graft injury is imperative. Although histological examination by invasive core needle biopsy of the graft remains the gold standard for the diagnosis of ongoing rejection, it is always associated with the risk of causing substantial graft injury as a result of the biopsy procedure itself. At the same time, biopsies are not immediately feasible for a considerable number of patients taking anticoagulants due to the high risk of complications such as bleeding and uneven distribution of pathological changes within the graft. This can result in the wrong diagnosis due to the small size of the tissue sample taken. Therefore, there is a need for a tool that overcomes these problems by being noninvasive and capable of assessing the whole organ at the same time for specific and fast detection of acute allograft rejection. In this article, we review current state-of-the-art approaches for noninvasive diagnostics of acute renal transplant inflammation, i.e., rejection. We especially focus on nonradiation-based methods using magnetic resonance imaging (MRI) and ultrasound.


Asunto(s)
Rechazo de Injerto/diagnóstico por imagen , Trasplante de Riñón/efectos adversos , Imagen por Resonancia Magnética , Ultrasonografía , Rechazo de Injerto/fisiopatología , Humanos , Riñón/diagnóstico por imagen , Riñón/fisiopatología , Trasplante Homólogo/efectos adversos
16.
Am J Nucl Med Mol Imaging ; 9(2): 110-126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139495

RESUMEN

Kidney transplantation is the preferred treatment for patients with end-stage renal disease. Despite effective immunosuppressants, acute allograft rejections pose a major threat to graft survival. In early stages, acute rejections are still potentially reversible, and early detection is crucial to initiate the necessary treatment options and to prevent further graft dysfunction or even loss of the complete graft. Currently, invasive core needle biopsy is the reference standard to diagnose acute rejection. However, biopsies carry the risk of graft injuries and cannot be immediately performed on patients receiving anticoagulation drugs. Therefore, non-invasive assessment of the whole organ for specific and rapid detection of acute allograft rejection is desirable. We herein provide a review summarizing current imaging-based approaches for non-invasive diagnosis of acute renal allograft rejection.

17.
World J Transplant ; 6(1): 174-82, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27011915

RESUMEN

Kidney transplantation is the best available treatment for patients with end stage renal disease. Despite the introduction of effective immunosuppressant drugs, episodes of acute allograft rejection still endanger graft survival. Since efficient treatment of acute rejection is available, rapid diagnosis of this reversible graft injury is essential. For diagnosis of rejection, invasive core needle biopsy of the graft is the "gold-standard". However, biopsy carries the risk of significant graft injury and is not immediately feasible in patients taking anticoagulants. Therefore, a non-invasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review current imaging-based state of the art approaches for non-invasive diagnostics of acute renal transplant rejection. We especially focus on new positron emission tomography-based as well as targeted ultrasound-based methods.

18.
Cell Metab ; 22(6): 1020-32, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26437603

RESUMEN

Chronic kidney disease (CKD) is a worldwide public health threat that increases risk of death due to cardiovascular complications, including left ventricular hypertrophy (LVH). Novel therapeutic targets are needed to design treatments to alleviate the cardiovascular burden of CKD. Previously, we demonstrated that circulating concentrations of fibroblast growth factor (FGF) 23 rise progressively in CKD and induce LVH through an unknown FGF receptor (FGFR)-dependent mechanism. Here, we report that FGF23 exclusively activates FGFR4 on cardiac myocytes to stimulate phospholipase Cγ/calcineurin/nuclear factor of activated T cell signaling. A specific FGFR4-blocking antibody inhibits FGF23-induced hypertrophy of isolated cardiac myocytes and attenuates LVH in rats with CKD. Mice lacking FGFR4 do not develop LVH in response to elevated FGF23, whereas knockin mice carrying an FGFR4 gain-of-function mutation spontaneously develop LVH. Thus, FGF23 promotes LVH by activating FGFR4, thereby establishing FGFR4 as a pharmacological target for reducing cardiovascular risk in CKD.


Asunto(s)
Hipertrofia Ventricular Izquierda/patología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Calcineurina/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Glucuronidasa/genética , Glucuronidasa/metabolismo , Células HEK293 , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Proteínas Klotho , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Fosfolipasa C gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal
19.
Biomed Res Int ; 2014: 874785, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24804257

RESUMEN

Molecular imaging techniques such as single photon emission computed tomography (SPECT) or positron emission tomography are promising tools for noninvasive diagnosis of acute allograft rejection (AR). Given the importance of renal transplantation and the limitation of available donors, detailed analysis of factors that affect transplant survival is important. Episodes of acute allograft rejection are a negative prognostic factor for long-term graft survival. Invasive core needle biopsies are still the "goldstandard" in rejection diagnostics. Nevertheless, they are cumbersome to the patient and carry the risk of significant graft injury. Notably, they cannot be performed on patients taking anticoagulant drugs. Therefore, a noninvasive tool assessing the whole organ for specific and fast detection of acute allograft rejection is desirable. We herein review SPECT- and PET-based approaches for noninvasive molecular imaging-based diagnostics of acute transplant rejection.


Asunto(s)
Trasplante de Riñón/efectos adversos , Riñón/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Rechazo de Injerto/diagnóstico por imagen , Rechazo de Injerto/patología , Humanos , Riñón/patología , Radiografía , Trasplante Homólogo/efectos adversos
20.
Atherosclerosis ; 234(2): 335-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24727235

RESUMEN

BACKGROUND AND OBJECTIVES: The endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the luminal surface of endothelial cells, is considered as an intravascular compartment that protects the vessel wall against pathogenic insults in cardiovascular disease. We hypothesized that chronic kidney disease (CKD) is associated with reduced eGC integrity and subsequent endothelial dysfunction. METHODS & RESULTS: Shedding of two major components of the eGC, namely syndecan-1 (Syn-1) and hyaluronan (HA), was measured by ELISA in 95 patients with CKD (stages 3-5) and 31 apparently healthy controls. Plasma levels of Syn-1 and HA increased steadily across CKD stages (5- and 5.5-fold, respectively P < 0.001) and were independently associated with impaired renal function after multivariate adjustment. Furthermore, Syn-1 and HA correlated tightly with plasma markers of endothelial dysfunction such as soluble fms-like tyrosine kinase-1 (sFlt-1), soluble vascular adhesion molecule-1 (sVCAM-1), von-Willebrand-Factor (vWF) and angiopoietin-2 (P < 0.001). Experimentally, excessive shedding of the eGC, evidenced by 11-fold increased Syn-1 plasma levels, was also observed in an established rat model of CKD, the 5/6-nephrectomized rats. Consistently, an atomic force microscopy-based approach evidenced a significant decrease in eGC thickness (360 ± 79 vs. 157 ± 29 nm, P = 0.001) and stiffness (0.33 ± 0.02 vs. 0.22 ± 0.01 pN/nm, P < 0.001) of aorta endothelial cell explants isolated from CKD rats. CONCLUSION: Our findings provide evidence for damage of the atheroprotective eGC as a consequence of CKD and potentially open a new avenue to pathophysiology and treatment of cardiovascular disease in renal patients.


Asunto(s)
Aterosclerosis/patología , Células Endoteliales/patología , Endotelio Vascular/patología , Glicocálix/patología , Insuficiencia Renal Crónica/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Aterosclerosis/sangre , Aterosclerosis/etiología , Aterosclerosis/fisiopatología , Biomarcadores/sangre , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Glicocálix/metabolismo , Humanos , Ácido Hialurónico/sangre , Riñón/fisiopatología , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Ratas Endogámicas BN , Ratas Endogámicas Lew , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Sindecano-1/sangre , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA