Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(3): 435-46, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529715

RESUMEN

Chromosomal instability in early cancer stages is caused by stress on DNA replication. The molecular basis for replication perturbation in this context is currently unknown. We studied the replication dynamics in cells in which a regulator of S phase entry and cell proliferation, the Rb-E2F pathway, is aberrantly activated. Aberrant activation of this pathway by HPV-16 E6/E7 or cyclin E oncogenes significantly decreased the cellular nucleotide levels in the newly transformed cells. Exogenously supplied nucleosides rescued the replication stress and DNA damage and dramatically decreased oncogene-induced transformation. Increased transcription of nucleotide biosynthesis genes, mediated by expressing the transcription factor c-myc, increased the nucleotide pool and also rescued the replication-induced DNA damage. Our results suggest a model for early oncogenesis in which uncoordinated activation of factors regulating cell proliferation leads to insufficient nucleotides that fail to support normal replication and genome stability.


Asunto(s)
Inestabilidad Genómica , Neoplasias/genética , Nucleótidos/biosíntesis , Ciclina E/metabolismo , Replicación del ADN , Factores de Transcripción E2F/metabolismo , Humanos , Pérdida de Heterocigocidad , Neoplasias/metabolismo , Neoplasias/patología , Nucleótidos/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Represoras/metabolismo , Proteína de Retinoblastoma/metabolismo , Fase S
2.
Nucleic Acids Res ; 47(18): 9685-9695, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31410468

RESUMEN

Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.


Asunto(s)
Inestabilidad Cromosómica/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Repeticiones de Dinucleótido/genética , Replicación del ADN/genética , Genoma Humano , Humanos , Conformación de Ácido Nucleico
3.
Genes Chromosomes Cancer ; 58(5): 295-304, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30525255

RESUMEN

Common fragile sites (CFSs) are specific genomic regions in normal chromosomes that exhibit genomic instability under DNA replication stress. As replication stress is an early feature of cancer development, CFSs are involved in the signature of genomic instability found in malignant tumors. The landscape of CFSs is tissue-specific and differs under different replication stress inducers. Nevertheless, the features underlying CFS sensitivity to replication stress are shared. Here, we review the events generating replication stress and discuss the unique characteristics of CFS regions and the cellular responses aimed to stabilizing these regions.


Asunto(s)
Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Animales , ADN/química , ADN/genética , Replicación del ADN , Humanos
4.
Mol Cell ; 43(1): 122-31, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21726815

RESUMEN

Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development.


Asunto(s)
Inestabilidad Cromosómica , Sitios Frágiles del Cromosoma , Cromosomas/química , Replicación del ADN/fisiología , Modelos Genéticos , Origen de Réplica , Línea Celular , Humanos
5.
Trends Genet ; 28(6): 295-302, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22465609

RESUMEN

Common fragile sites (CFSs) were characterized almost 30 years ago as sites undergoing genomic instability in cancer. Recently, in vitro studies have found that oncogene-induced replication stress leads to CFS instability. In vivo, CFSs were found to be preferentially unstable during early stages of cancer development and to leave a unique signature of instability. It is now increasingly clear that, along the spectrum of replication features characterizing CFSs, failure of origin activation is a common feature. This and other features of CFSs, together with the replication stress characterizing early stages of cancer development, lead to incomplete replication that results in genomic instability preferentially at CFSs. Here, we review the shared and unique characteristics of CFSs, their underlying causes and their implications, particularly with respect to the development of cancer.


Asunto(s)
Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Neoplasias/genética , Animales , Cromatina , Replicación del ADN , Humanos
6.
Cell Mol Life Sci ; 71(23): 4495-506, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25297918

RESUMEN

Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression. The preferred sensitivity of CFSs to replication stress stems from various mechanisms including: replication fork arrest at AT-rich repeats, origin paucity along large genomic regions, failure in activation of dormant origins, late replication timing, collision between replication and transcription along large genes, all leading to incomplete replication of the CFS region and resulting in chromosomal instability. Here we review shared and unique characteristics of CFSs, their underlying causes and implications, particularly for the development of cancer.


Asunto(s)
Sitios Frágiles del Cromosoma , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Neoplasias/genética , Animales , Daño del ADN , Humanos
7.
Emerg Top Life Sci ; 7(3): 277-287, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37876349

RESUMEN

Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types. Over the years, it became clear that a combination of different characteristics underlies the enhanced sensitivity of CFSs to replication stress. As of today, there is a strong evidence that the core fragility regions along CFSs overlap with actively transcribed large genes with delayed replication timing upon replication stress. Recently, the mechanistic basis for CFS instability was further extended to regions which span topologically associated domain (TAD) boundaries, generating a fragility signature composed of replication, transcription and genome organization. The presence of difficult-to-replicate AT-rich repeats was one of the early features suggested to characterize a subgroup of CFSs. These long stretches of AT-dinucleotide have the potential to fold into stable secondary structures which may impede replication fork progression, leaving the region under-replicated. Here, we focus on the molecular mechanisms underlying repeat instability at CFSs and on the proteins involved in the resolution of secondary structure impediments arising along repetitive sequence elements which are essential for the maintenance of genome stability.


Asunto(s)
Momento de Replicación del ADN , Replicación del ADN , Humanos , Sitios Frágiles del Cromosoma/genética , Inestabilidad Cromosómica/genética , ADN/genética
8.
J Cyst Fibros ; 22 Suppl 1: S39-S44, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658041

RESUMEN

Most people with Cystic Fibrosis (PwCF) harbor Cystic Fibrosis Transmembrane Conductance (CFTR) mutations that respond to highly effective CFTR modulators (HEM); however, a small fraction of non-responsive variants will require alternative approaches for treatment. Furthermore, the long-term goal to develop a cure for CF will require novel therapeutic strategies. Nucleic acid-based approaches offer the potential to address all CF-causing mutations and possibly a cure for all PwCF. In this minireview, we discuss current knowledge, recent progress, and critical questions surrounding the topic of Gene-, RNA-, and ASO-based therapies for the treatment of Cystic Fibrosis (CF).


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , ARN , Mutación , Terapia Genética
9.
Nucleic Acid Ther ; 33(5): 306-318, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643307

RESUMEN

Recent advances in the therapeutic potential of RNA-related treatments, specifically for antisense oligonucleotide (ASO)-based drugs, have led to increased numbers of ASO regulatory approvals. In this study, we focus on SPL84, an inhaled ASO-based drug, developed for the treatment of the pulmonary disease cystic fibrosis (CF). Pulmonary drug delivery is challenging, due to a variety of biological, physical, chemical, and structural barriers, especially when targeting the cell nucleus. The distribution of SPL84 throughout the lungs, penetration into the epithelial cells and nucleus, and structural stability are critical parameters that will impact drug efficacy in a clinical setting. In this study, we demonstrate broad distribution, as well as cell and nucleus penetration of SPL84 in mouse and monkey lungs. In vivo and in vitro studies confirmed the stability of our inhaled drug in CF patient-derived mucus and in lung lysosomal extracts. The mobility of SPL84 through hyperconcentrated mucus was also demonstrated. Our results, supported by a promising preclinical pharmacological effect of full restoration of cystic fibrosis transmembrane conductance regulator channel activity, emphasize the high potential of SPL84 as an effective drug for the treatment of CF patients. In addition, successfully tackling the lung distribution of SPL84 offers immense opportunities for further development of SpliSense's inhaled ASO-based drugs for unmet needs in pulmonary diseases.


Asunto(s)
Fibrosis Quística , Humanos , Ratones , Animales , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Oligonucleótidos Antisentido/farmacología , Preparaciones Farmacéuticas , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Pulmón
10.
J Cyst Fibros ; 22(6): 1062-1069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37331863

RESUMEN

BACKGROUND: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) significantly improves health outcomes in people with cystic fibrosis (pwCF) carrying one or two F508del mutations. According to in vitro assays performed in FRT cells, 178 additional mutations respond to ELX/TEZ/IVA. The N1303K mutation is not included in this list of mutations. Recent in vitro data suggested that ELX/TEZ/IVA increases N1303K-CFTR activity. Based on the in vitro response, eight patients commenced treatment with ELX/TEZ/IVA. METHODS: Two homozygotes; and six compound heterozygotes N1303K/nonsense or frameshift mutation pwCF were treated off label with ELX/TEZ/IVA. Clinical data before and 8 weeks after starting treatment were prospectively collected. The response to ELX/TEZ/IVA was assessed in intestinal organoids derived from 5 study patients and an additional patient carrying N1303K that is not receiving treatment. RESULTS: Compared to the values before commencing treatment, mean forced expiratory volume in 1 second increased by 18.4 percentage points and 26.5% relative to baseline, mean BMI increased by 0.79 Kg/m2, and mean lung clearance index decreased by 3.6 points and 22.2%. There was no significant change in sweat chloride. Nasal potential difference normalized in four patients and remained abnormal in three. Results in 3D intestinal organoids and 2D nasal epithelial cultures showed a response in CFTR channel activity. CONCLUSIONS: This report supports the previously reported in vitro data, performed in human nasal and bronchial epithelial cells and intestinal organoids, that pwCF who carry the N1303K mutation have a significant clinical benefit by ELX/TEZ/IVA treatment.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Benzodioxoles/uso terapéutico , Aminofenoles/uso terapéutico , Agonistas de los Canales de Cloruro/uso terapéutico
11.
J Cyst Fibros ; 22(6): 1070-1079, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37422433

RESUMEN

RATIONALE: Limited information is available on the clinical status of people with Cystic Fibrosis (pwCF) carrying 2 nonsense mutations (PTC/PTC). The main objective of this study was to compare disease severity between pwCF PTC/PTC, compound heterozygous for F508del and PTC (F508del/PTC) and homozygous for F508del (F508del+/+). METHODS: Based on the European CF Society Patient Registry clinical data of pwCF living in high and middle income European and neighboring countries, PTC/PTC (n = 657) were compared with F508del+/+ (n = 21,317) and F508del/PTC(n = 4254).CFTR mRNA and protein activity levels were assessed in primary human nasal epithelial (HNE) cells sampled from 22 PTC/PTC pwCF. MAIN RESULTS: As compared to F508del+/+ pwCF; both PTC/PTC and F508del/PTC pwCF exhibited a significantly faster rate of decline in Forced Expiratory Volume in 1 s (FEV1) from 7 years (-1.33 for F508del +/+, -1.59 for F508del/PTC; -1.65 for PTC/PTC, p < 0.001) until respectively 30 years (-1.05 for F508del +/+, -1.23 for PTC/PTC, p = 0.048) and 27 years (-1.12 for F508del +/+, -1.26 for F508del/PTC, p = 0.034). This resulted in lower FEV1 values in adulthood. Mortality of pediatric pwCF with one or two PTC alleles was significantly higher than their F508del homozygous pairs. Infection with Pseudomonas aeruginosa was more frequent in PTC/PTC versus F508del+/+ and F508del/PTC pwCF. CFTR activity in PTC/PTC pwCF's HNE cells ranged between 0% to 3% of the wild-type level. CONCLUSIONS: Nonsense mutations decrease the survival and accelerate the course of respiratory disease in children and adolescents with Cystic Fibrosis.


Asunto(s)
Fibrosis Quística , Adolescente , Humanos , Niño , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Volumen Espiratorio Forzado , ARN Mensajero , Mutación
12.
Cancer Cell ; 1(1): 89-97, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12086891

RESUMEN

Oncogene amplification is an important process in human tumorigenesis, but its underlying mechanism is currently unknown. Cytogenetic analysis indicates that amplification of drug-selected genes in rodent cells is driven by recurrent breaks within chromosomal common fragile sites (CFSs), via the breakage-fusion-bridge (BFB) mechanism. Here we show that BFB cycles drive the intrachromosomal amplification of the MET oncogene in a human gastric carcinoma. Our molecular evidence includes a "ladder-like" structure and inverted repeat organization of the MET amplicons. Furthermore, we show that the breakpoints, setting the centromeric amplicon boundaries, are within the CFS FRA7G region. Upon replication stress, this region showed perturbed chromatin organization, predisposing it to breakage. Thus, in vivo induction of CFSs can play an important role in human oncogenesis.


Asunto(s)
Fragilidad Cromosómica/genética , Amplificación de Genes/genética , Oncogenes/genética , Proteínas Proto-Oncogénicas c-met/genética , Neoplasias Gástricas/genética , Centrómero/fisiología , Cromatina/genética , Aberraciones Cromosómicas , Trastornos de los Cromosomas , Sitios Frágiles del Cromosoma , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Proteínas Proto-Oncogénicas c-met/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Células Tumorales Cultivadas
13.
Cell Rep ; 40(13): 111397, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170822

RESUMEN

DNA replication is a complex process tightly regulated to ensure faithful genome duplication, and its perturbation leads to DNA damage and genomic instability. Replication stress is commonly associated with slow and stalled replication forks. Recently, accelerated replication has emerged as a non-canonical form of replication stress. However, the molecular basis underlying fork acceleration is largely unknown. Here, we show that mutated HRAS activation leads to increased topoisomerase 1 (TOP1) expression, causing aberrant replication fork acceleration and DNA damage by decreasing RNA-DNA hybrids or R-loops. In these cells, restoration of TOP1 expression or mild replication inhibition rescues the perturbed replication and reduces DNA damage. Furthermore, TOP1 or RNaseH1 overexpression induces accelerated replication and DNA damage, highlighting the importance of TOP1 equilibrium in regulating R-loop homeostasis to ensure faithful DNA replication and genome integrity. Altogether, our results dissect a mechanism of oncogene-induced DNA damage by aberrant replication fork acceleration.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ADN/metabolismo , Daño del ADN , Replicación del ADN/genética , Humanos , ARN/metabolismo
14.
J Cyst Fibros ; 21(4): 630-636, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34972649

RESUMEN

BACKGROUND: Antisense oligonucleotide- based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to generate skipping over exon 23 of the CFTR transcript, to eliminate the W1282X nonsense mutation and avoid RNA degradation induced by the nonsense mediated mRNA decay mechanism, allowing production of partially active CFTR proteins lacking exon 23. METHODS: ∼80 ASOs were screened in 16HBEge W1282X cells. ASO candidates showing significant exon skipping were assessed for their W1282X allele selectivity and the increase of CFTR protein maturation and function. The effect of a highly potent ASO candidates was further analyzed in well differentiated primary human nasal epithelial cells, derived from a W1282X homozygous patient. RESULTS: ASO screening led to identification of several ASOs that significantly decrease the level of CFTR transcripts including exon 23. These ASOs resulted in significant levels of mature CFTR protein and together with modulators restore the channel function following free uptake into these cells. Importantly, a highly potent lead ASOs, efficiently delivered by free uptake, was able to increase the level of transcripts lacking exon 23 and restore the CFTR function in cells from a W1282X homozygote patient. CONCLUSION: The highly efficient exon 23 skipping induced by free uptake of the lead ASO and the resulting levels of mature CFTR protein exhibiting channel function in the presence of modulators, demonstrate the ASO therapeutic potential benefit for CF patients carrying the W1282X mutation with the objective to advance the lead candidate SPL23-2 to proof-of-concept clinical study.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Codón sin Sentido , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Mutación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Empalme del ARN/genética
15.
Trends Genet ; 24(11): 552-63, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18937996

RESUMEN

Approximately one-third of alleles causing genetic diseases carry premature termination codons (PTCs), which lead to the production of truncated proteins. The past decade has seen considerable interest in therapeutic approaches aimed at readthrough of in-frame PTCs to enable synthesis of full-length proteins. However, attempts to readthrough PTCs in many diseases resulted in variable effects. Here, we focus on the efforts of such therapeutic approaches in cystic fibrosis and Duchenne muscular dystrophy and discuss the factors contributing to successful readthrough and how the nonsense-mediated mRNA decay (NMD) pathway regulates this response. A deeper understanding of the molecular basis for variable response to readthrough of PTCs is necessary so that appropriate therapies can be developed to treat many human genetic diseases caused by PTCs.


Asunto(s)
Codón sin Sentido/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Alelos , Fibrosis Quística/genética , Fibrosis Quística/terapia , Humanos , Modelos Biológicos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oxadiazoles/uso terapéutico , Estabilidad del ARN , ARN Mensajero/metabolismo
16.
J Cyst Fibros ; 20(5): 865-875, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34226157

RESUMEN

BACKGROUND: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849+10 kb C-to-T splicing mutation in the CFTR gene. METHODS: We have screened, in FRT cells expressing the 3849+10 kb C-to-T splicing mutation, ~30 2'-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849+10 kb C-to-T allele. RESULTS: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2'-Methoxy Ethyl modification (2'MOE). CONCLUSION: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Desarrollo de Medicamentos , Oligonucleótidos Antisentido , Células Cultivadas , Humanos , Mutación , Empalme del ARN
17.
J Clin Invest ; 117(3): 683-92, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17290305

RESUMEN

Aminoglycosides can readthrough premature termination codons (PTCs), permitting translation of full-length proteins. Previously we have found variable efficiency of readthrough in response to the aminoglycoside gentamicin among cystic fibrosis (CF) patients, all carrying the W1282X nonsense mutation. Here we demonstrate that there are patients in whom the level of CF transmembrane conductance regulator (CFTR) nonsense transcripts is markedly reduced, while in others it is significantly higher. Response to gentamicin was found only in patients with the higher level. We further investigated the possibility that the nonsense-mediated mRNA decay (NMD) might vary among cells and hence governs the level of nonsense transcripts available for readthrough. Our results demonstrate differences in NMD efficiency of CFTR transcripts carrying the W1282X mutation among different epithelial cell lines derived from the same tissue. Variability was also found for 5 physiologic NMD substrates, RPL3, SC35 1.6 kb, SC35 1.7 kb, ASNS, and CARS. Importantly, our results demonstrate the existence of cells in which NMD of all transcripts was efficient and others in which the NMD was less efficient. Downregulation of NMD in cells carrying the W1282X mutation increased the level of CFTR nonsense transcripts and enhanced the CFTR chloride channel activity in response to gentamicin. Together our results suggest that the efficiency of NMD might vary and hence have an important role in governing the response to treatments aiming to promote readthrough of PTCs in many genetic diseases.


Asunto(s)
Aminoglicósidos/uso terapéutico , Antibacterianos/uso terapéutico , Codón sin Sentido/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Gentamicinas/uso terapéutico , Estabilidad del ARN/genética , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Resistencia a Medicamentos/genética , Humanos , Mutación , ARN Mensajero/metabolismo , Proteína Ribosomal L3 , Transcripción Genética
18.
J Cyst Fibros ; 19 Suppl 1: S54-S59, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31948871

RESUMEN

Gene therapy offers great promise for cystic fibrosis which has never been quite fulfilled due to the challenges of delivering sufficient amounts of the CFTR gene and expression persistence for a sufficient period of time in the lungs to have any effect. Initial trials explored both viral and non-viral vectors but failed to achieve a significant breakthrough. However, in recent years, new opportunities have emerged that exploit our increased knowledge and understanding of the biology of CF and the airway epithelium. New technologies include new viral and non-viral vector approaches to delivery, but also alternative nucleic acid technologies including oligonucleotides and siRNA approaches for gene silencing and gene splicing, described in this review, as presented at the 2019 annual European CF Society Basic Science meeting (Dubrovnik, Croatia). We also briefly discuss other emerging technologies including mRNA and CRISPR gene editing that are advancing rapidly. The future prospects for genetic therapies for CF are now diverse and more promising probably than any time since the discovery of the CF gene.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística , Terapia Genética , Fibrosis Quística/genética , Fibrosis Quística/terapia , ADN Recombinante , Silenciador del Gen , Terapia Genética/métodos , Terapia Genética/tendencias , Humanos
19.
Nat Commun ; 11(1): 3613, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680994

RESUMEN

Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Momento de Replicación del ADN/genética , Genoma Humano , Inestabilidad Genómica , Afidicolina/farmacología , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Mapeo Cromosómico/métodos , ADN/química , Momento de Replicación del ADN/efectos de los fármacos , Fibroblastos , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/genética , Conformación de Ácido Nucleico , Sensibilidad y Especificidad , Transcripción Genética/efectos de los fármacos
20.
Lancet ; 372(9640): 719-27, 2008 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-18722008

RESUMEN

BACKGROUND: In about 10% of patients worldwide and more than 50% of patients in Israel, cystic fibrosis results from nonsense mutations (premature stop codons) in the messenger RNA (mRNA) for the cystic fibrosis transmembrane conductance regulator (CFTR). PTC124 is an orally bioavailable small molecule that is designed to induce ribosomes to selectively read through premature stop codons during mRNA translation, to produce functional CFTR. METHODS: This phase II prospective trial recruited adults with cystic fibrosis who had at least one nonsense mutation in the CFTR gene. Patients were assessed in two 28-day cycles. During the first cycle, patients received PTC124 at 16 mg/kg per day in three doses every day for 14 days, followed by 14 days without treatment; in the second cycle, patients received 40 mg/kg of PTC124 in three doses every day for 14 days, followed by 14 days without treatment. The primary outcome had three components: change in CFTR-mediated total chloride transport; proportion of patients who responded to treatment; and normalisation of chloride transport, as assessed by transepithelial nasal potential difference (PD) at baseline, at the end of each 14-day treatment course, and after 14 days without treatment. The trial was registered with who.int/ictrp, and with clinicaltrials.gov, number NCT00237380. FINDINGS: Transepithelial nasal PD was evaluated in 23 patients in the first cycle and in 21 patients in the second cycle. Mean total chloride transport increased in the first treatment phase, with a change of -7.1 (SD 7.0) mV (p<0.0001), and in the second, with a change of -3.7 (SD 7.3) mV (p=0.032). We recorded a response in total chloride transport (defined as a change in nasal PD of -5 mV or more) in 16 of the 23 patients in the first cycle's treatment phase (p<0.0001) and in eight of the 21 patients in the second cycle (p<0.0001). Total chloride transport entered the normal range for 13 of 23 patients in the first cycle's treatment phase (p=0.0003) and for nine of 21 in the second cycle (p=0.02). Two patients given PTC124 had constipation without intestinal obstruction, and four had mild dysuria. No drug-related serious adverse events were recorded. INTERPRETATION: In patients with cystic fibrosis who have a premature stop codon in the CFTR gene, oral administration of PTC124 to suppress nonsense mutations reduces the epithelial electrophysiological abnormalities caused by CFTR dysfunction.


Asunto(s)
Codón de Terminación/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Oxadiazoles/uso terapéutico , Adolescente , Adulto , Cloruros/metabolismo , Codón sin Sentido/efectos de los fármacos , Codón sin Sentido/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxadiazoles/efectos adversos , Oxadiazoles/farmacología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA