Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219165

RESUMEN

PURPOSE: MRI-guidance of cardiac catheterization is currently performed using one or multiple 2D imaging planes, which may be suboptimal for catheter navigation, especially in patients with complex anatomies. The purpose of the work was to develop a robust real-time 3D catheter tracking method and 3D visualization strategy for improved MRI-guidance of cardiac catheterization procedures. METHODS: A fast 3D tracking technique was developed using continuous acquisition of two orthogonal 2D-projection images. Each projection corresponds to a gradient echo stack of slices with only the central k-space lines being collected for each slice. To enhance catheter contrast, a saturation pulse is added ahead of the projection pair. An offline image processing algorithm was developed to identify the 2D coordinates of the balloon in each projection image and to estimate its corresponding 3D coordinates. Post-processing includes background signal suppression using an atlas of background 2D-projection images. 3D visualization of the catheter and anatomy is proposed using three live sagittal, coronal, and axial (MPR) views and 3D rendering. The technique was tested in a subset of a catheterization step in three patients undergoing MRI-guided cardiac catheterization using a passive balloon catheter. RESULTS: The extraction of the catheter balloon 3D coordinates was successful in all patients and for the majority of time-points (accuracy >96%). This tracking method enabled a novel 3D visualization strategy for passive balloon catheter, providing enhanced anatomical context during catheter navigation. CONCLUSION: The proposed tracking strategy shows promise for robust tracking of passive balloon catheter and may enable enhanced visualization during MRI-guided cardiac catheterization.

2.
J Neurol Neurosurg Psychiatry ; 92(12): 1254-1258, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583944

RESUMEN

BACKGROUND: Mental health issues have been reported after SARS-CoV-2 infection. However, comparison to prevalence in uninfected individuals and contribution from common risk factors (eg, obesity and comorbidities) have not been examined. We identified how COVID-19 relates to mental health in the large community-based COVID Symptom Study. METHODS: We assessed anxiety and depression symptoms using two validated questionnaires in 413148 individuals between February and April 2021; 26998 had tested positive for SARS-CoV-2. We adjusted for physical and mental prepandemic comorbidities, body mass index (BMI), age and sex. FINDINGS: Overall, 26.4% of participants met screening criteria for general anxiety and depression. Anxiety and depression were slightly more prevalent in previously SARS-CoV-2-positive (30.4%) vs SARS-CoV-2-negative (26.1%) individuals. This association was small compared with the effect of an unhealthy BMI and the presence of other comorbidities, and not evident in younger participants (≤40 years). Findings were robust to multiple sensitivity analyses. Association between SARS-CoV-2 infection and anxiety and depression was stronger in individuals with recent (<30 days) versus more distant (>120 days) infection, suggesting a short-term effect. INTERPRETATION: A small association was identified between SARS-CoV-2 infection and anxiety and depression symptoms. The proportion meeting criteria for self-reported anxiety and depression disorders is only slightly higher than prepandemic.


Asunto(s)
Ansiedad/epidemiología , COVID-19/psicología , Depresión/epidemiología , Aplicaciones Móviles , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Salud Mental , Persona de Mediana Edad , Prevalencia , SARS-CoV-2 , Autoinforme , Adulto Joven
3.
Comput Methods Programs Biomed ; 257: 108422, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39395305

RESUMEN

BACKGROUND AND OBJECTIVE: Preprocessing of data is a vital step for almost all deep learning workflows. In computer vision, manipulation of data intensity and spatial properties can improve network stability and can provide an important source of generalisation for deep neural networks. Models are frequently trained with preprocessing pipelines composed of many stages, but these pipelines come with a drawback; each stage that resamples the data costs time, degrades image quality, and adds bias to the output. Long pipelines can also be complex to design, especially in medical imaging, where cropping data early can cause significant artifacts. METHODS: We present Lazy Resampling, a software that rephrases spatial preprocessing operations as a graphics pipeline. Rather than each transform individually modifying the data, the transforms generate transform descriptions that are composited together into a single resample operation wherever possible. This reduces pipeline execution time and, most importantly, limits signal degradation. It enables simpler pipeline design as crops and other operations become non-destructive. Lazy Resampling is designed in such a way that it provides the maximum benefit to users without requiring them to understand the underlying concepts or change the way that they build pipelines. RESULTS: We evaluate Lazy Resampling by comparing traditional pipelines and the corresponding lazy resampling pipeline for the following tasks on Medical Segmentation Decathlon datasets. We demonstrate lower information loss in lazy pipelines vs. traditional pipelines. We demonstrate that Lazy Resampling can avoid catastrophic loss of semantic segmentation label accuracy occurring in traditional pipelines when passing labels through a pipeline and then back through the inverted pipeline. Finally, we demonstrate statistically significant improvements when training UNets for semantic segmentation. CONCLUSION: Lazy Resampling reduces the loss of information that occurs when running processing pipelines that traditionally have multiple resampling steps and enables researchers to build simpler pipelines by making operations such as rotation and cropping effectively non-destructive. It makes it possible to invert labels back through a pipeline without catastrophic loss of accuracy. A reference implementation for Lazy Resampling can be found at https://github.com/KCL-BMEIS/LazyResampling. Lazy Resampling is being implemented as a core feature in MONAI, an open source python-based deep learning library for medical imaging, with a roadmap for a full integration.

4.
Neuro Oncol ; 26(6): 1138-1151, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38285679

RESUMEN

BACKGROUND: The aim was to predict survival of glioblastoma at 8 months after radiotherapy (a period allowing for completing a typical course of adjuvant temozolomide), by applying deep learning to the first brain MRI after radiotherapy completion. METHODS: Retrospective and prospective data were collected from 206 consecutive glioblastoma, isocitrate dehydrogenase -wildtype patients diagnosed between March 2014 and February 2022 across 11 UK centers. Models were trained on 158 retrospective patients from 3 centers. Holdout test sets were retrospective (n = 19; internal validation), and prospective (n = 29; external validation from 8 distinct centers). Neural network branches for T2-weighted and contrast-enhanced T1-weighted inputs were concatenated to predict survival. A nonimaging branch (demographics/MGMT/treatment data) was also combined with the imaging model. We investigated the influence of individual MR sequences; nonimaging features; and weighted dense blocks pretrained for abnormality detection. RESULTS: The imaging model outperformed the nonimaging model in all test sets (area under the receiver-operating characteristic curve, AUC P = .038) and performed similarly to a combined imaging/nonimaging model (P > .05). Imaging, nonimaging, and combined models applied to amalgamated test sets gave AUCs of 0.93, 0.79, and 0.91. Initializing the imaging model with pretrained weights from 10 000s of brain MRIs improved performance considerably (amalgamated test sets without pretraining 0.64; P = .003). CONCLUSIONS: A deep learning model using MRI images after radiotherapy reliably and accurately determined survival of glioblastoma. The model serves as a prognostic biomarker identifying patients who will not survive beyond a typical course of adjuvant temozolomide, thereby stratifying patients into those who might require early second-line or clinical trial treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imagen por Resonancia Magnética , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Glioblastoma/mortalidad , Glioblastoma/patología , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Estudios Prospectivos , Anciano , Pronóstico , Aprendizaje Profundo , Adulto , Tasa de Supervivencia , Estudios de Seguimiento , Temozolomida/uso terapéutico
5.
J Infect ; 87(6): 506-515, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37777159

RESUMEN

BACKGROUND: Booster COVID-19 vaccines have shown efficacy in clinical trials and effectiveness in real-world data against symptomatic and severe illness. However, some people still become infected with SARS-CoV-2 following a third (booster) vaccination. This study describes the characteristics of SARS-CoV-2 illness following a third vaccination and assesses the risk of progression to symptomatic disease in SARS-CoV-2 infected individuals with time since vaccination. METHODS: This prospective, community-based, case-control study used data from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile application, self-reporting a first positive COVID-19 test between June 1, 2021 and April 1, 2022. To describe the characteristics of SARS-CoV-2 illness following a third vaccination, we selected cases and controls who had received a third and second dose of monovalent vaccination against COVID-19, respectively, and reported a first positive SARS-CoV-2 test at least 7 days after most recent vaccination. Cases and controls were matched (1:1) based on age, sex, BMI, time between first vaccination and infection, and week of testing. We used logistic regression models (adjusted for age, sex, BMI, level of social deprivation and frailty) to analyse associations of disease severity, overall disease duration, and individual symptoms with booster vaccination status. To assess for potential waning of vaccine effectiveness, we compared disease severity, duration, and symptom profiles of individuals testing positive within 3 months of most recent vaccination (reference group) to profiles of individuals infected between 3 and 4, 4-5, and 5-6 months, for both third and second dose. All analyses were stratified by time period, based on the predominant SARS-CoV-2 variant at time of infection (Delta: June 1, 2021-27 Nov, 2021; Omicron: 20 Dec, 2021-Apr 1, 2022). FINDINGS: During the study period, 50,162 (Delta period) and 162,041 (Omicron) participants reported a positive SARS-CoV-2 test. During the Delta period, infection following three vaccination doses was associated with lower odds of long COVID (symptoms≥ 4 weeks) (OR=0.83, CI[0.50-1.36], p < 0.0001), hospitalisation (OR=0.55, CI[0.39-0.75], p < 0.0001) and severe symptoms (OR=0.36, CI[0.27-0.49], p < 0.0001), and higher odds of asymptomatic infection (OR=3.45, CI[2.86-4.16], p < 0.0001), compared to infection following only two vaccination doses. During the Omicron period, infection following three vaccination doses was associated with lower odds of severe symptoms (OR=0.48, CI[0.42-0.55], p < 0.0001). During the Delta period, infected individuals were less likely to report almost all individual symptoms after a third vaccination. During the Omicron period, individuals were less likely to report most symptoms after a third vaccination, except for upper respiratory symptoms e.g. sneezing (OR=1.40, CI[1.18-1.35], p < 0.0001), runny nose (OR=1.26, CI[1.18-1.35], p < 0.0001), sore throat (OR=1.17, CI[1.10-1.25], p < 0.0001), and hoarse voice (OR=1.13, CI[1.06-1.21], p < 0.0001), which were more likely to be reported. There was evidence of reduced vaccine effectiveness during both Delta and Omicron periods in those infected more than 3 months after their most recent vaccination, with increased reporting of severe symptoms, long duration illness, and most individual symptoms. INTERPRETATION: This study suggests that a third dose of monovalent vaccine may reduce symptoms, severity and duration of SARS-CoV-2 infection following vaccination. For Omicron variants, the third vaccination appears to reduce overall symptom burden but may increase upper respiratory symptoms, potentially due to immunological priming. There is evidence of waning vaccine effectiveness against progression to symptomatic and severe disease and long COVID after three months. Our findings support ongoing booster vaccination promotion amongst individuals at high risk from COVID-19, to reduce severe symptoms and duration of illness, and health system burden. Disseminating knowledge on expected symptoms following booster vaccination may encourage vaccine uptake.


Asunto(s)
COVID-19 , Adulto , Humanos , Estudios de Casos y Controles , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Síndrome Post Agudo de COVID-19 , Estudios Prospectivos , SARS-CoV-2 , Vacunación , Masculino , Femenino
6.
EClinicalMedicine ; 62: 102086, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37654669

RESUMEN

Background: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored. Methods: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds. Findings: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, ß = -0.14 standard deviations, SDs, 95% confidence intervals, CI: -0.21, -0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, ß = -0.22 SDs, 95% CI: -0.35, -0.09). Effects were comparable to hospital presentation during illness (N = 281, ß = -0.31 SDs, 95% CI: -0.44, -0.18), and 10 years age difference (60-70 years vs. 50-60 years, ß = -0.21 SDs, 95% CI: -0.30, -0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection. Interpretation: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms. Funding: Chronic Disease Research Foundation, Wellcome Trust, National Institute for Health and Care Research, Medical Research Council, British Heart Foundation, Alzheimer's Society, European Union, COVID-19 Driver Relief Fund, French National Research Agency.

7.
Lancet Digit Health ; 5(7): e421-e434, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202336

RESUMEN

BACKGROUND: Self-reported symptom studies rapidly increased understanding of SARS-CoV-2 during the COVID-19 pandemic and enabled monitoring of long-term effects of COVID-19 outside hospital settings. Post-COVID-19 condition presents as heterogeneous profiles, which need characterisation to enable personalised patient care. We aimed to describe post-COVID-19 condition profiles by viral variant and vaccination status. METHODS: In this prospective longitudinal cohort study, we analysed data from UK-based adults (aged 18-100 years) who regularly provided health reports via the Covid Symptom Study smartphone app between March 24, 2020, and Dec 8, 2021. We included participants who reported feeling physically normal for at least 30 days before testing positive for SARS-CoV-2 who subsequently developed long COVID (ie, symptoms lasting longer than 28 days from the date of the initial positive test). We separately defined post-COVID-19 condition as symptoms that persisted for at least 84 days after the initial positive test. We did unsupervised clustering analysis of time-series data to identify distinct symptom profiles for vaccinated and unvaccinated people with post-COVID-19 condition after infection with the wild-type, alpha (B.1.1.7), or delta (B.1.617.2 and AY.x) variants of SARS-CoV-2. Clusters were then characterised on the basis of symptom prevalence, duration, demography, and previous comorbidities. We also used an additional testing sample with additional data from the Covid Symptom Study Biobank (collected between October, 2020, and April, 2021) to investigate the effects of the identified symptom clusters of post-COVID-19 condition on the lives of affected people. FINDINGS: We included 9804 people from the COVID Symptom Study with long COVID, 1513 (15%) of whom developed post-COVID-19 condition. Sample sizes were sufficient only for analyses of the unvaccinated wild-type, unvaccinated alpha variant, and vaccinated delta variant groups. We identified distinct profiles of symptoms for post-COVID-19 condition within and across variants: four endotypes were identified for infections due to the wild-type variant (in unvaccinated people), seven for the alpha variant (in unvaccinated people), and five for the delta variant (in vaccinated people). Across all variants, we identified a cardiorespiratory cluster of symptoms, a central neurological cluster, and a multi-organ systemic inflammatory cluster. These three main clusers were confirmed in a testing sample. Gastrointestinal symptoms clustered in no more than two specific phenotypes per viral variant. INTERPRETATION: Our unsupervised analysis identified different profiles of post-COVID-19 condition, characterised by differing symptom combinations, durations, and functional outcomes. Our classification could be useful for understanding the distinct mechanisms of post-COVID-19 condition, as well as for identification of subgroups of individuals who might be at risk of prolonged debilitation. FUNDING: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, UK Alzheimer's Society, and ZOE.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Longitudinales , Inteligencia Artificial , Pandemias , Síndrome Post Agudo de COVID-19 , Estudios Prospectivos
8.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106921

RESUMEN

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

9.
Lancet Reg Health Eur ; 19: 100429, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35821715

RESUMEN

Background: We aimed to explore the effectiveness of one-dose BNT162b2 vaccination upon SARS-CoV-2 infection, its effect on COVID-19 presentation, and post-vaccination symptoms in children and adolescents (CA) in the UK during periods of Delta and Omicron variant predominance. Methods: In this prospective longitudinal cohort study, we analysed data from 115,775 CA aged 12-17 years, proxy-reported through the Covid Symptom Study (CSS) smartphone application. We calculated post-vaccination infection risk after one dose of BNT162b2, and described the illness profile of CA with post-vaccination SARS-CoV-2 infection, compared to unvaccinated CA, and post-vaccination side-effects. Findings: Between August 5, 2021 and February 14, 2022, 25,971 UK CA aged 12-17 years received one dose of BNT162b2 vaccine. The probability of testing positive for infection diverged soon after vaccination, and was lower in CA with prior SARS-CoV-2 infection. Vaccination reduced proxy-reported infection risk (-80·4% (95% CI -0·82 -0·78) and -53·7% (95% CI -0·62 -0·43) at 14-30 days with Delta and Omicron variants respectively, and -61·5% (95% CI -0·74 -0·44) and -63·7% (95% CI -0·68 -0.59) after 61-90 days). Vaccinated CA who contracted SARS-CoV-2 during the Delta period had milder disease than unvaccinated CA; during the Omicron period this was only evident in children aged 12-15 years. Overall disease profile was similar in both vaccinated and unvaccinated CA. Post-vaccination local side-effects were common, systemic side-effects were uncommon, and both resolved within few days (3 days in most cases). Interpretation: One dose of BNT162b2 vaccine reduced risk of SARS-CoV-2 infection for at least 90 days in CA aged 12-17 years. Vaccine protection varied for SARS-CoV-2 variant type (lower for Omicron than Delta variant), and was enhanced by pre-vaccination SARS-CoV-2 infection. Severity of COVID-19 presentation after vaccination was generally milder, although unvaccinated CA also had generally mild disease. Overall, vaccination was well-tolerated. Funding: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation and Alzheimer's Society, and ZOE Limited.

10.
Sci Rep ; 12(1): 10904, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764879

RESUMEN

The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≥ 7 days was either lower or unchanged. Illness duration ≥ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants.


Asunto(s)
COVID-19 , Hepatitis D , Adulto , COVID-19/epidemiología , Humanos , Estudios Prospectivos , Reinfección , SARS-CoV-2/genética
11.
Children (Basel) ; 9(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35626830

RESUMEN

BACKGROUND: The Delta (B.1.617.2) SARS-CoV-2 variant was the predominant UK circulating strain between May and November 2021. We investigated whether COVID-19 from Delta infection differed from infection with previous variants in children. METHODS: Through the prospective COVID Symptom Study, 109,626 UK school-aged children were proxy-reported between 28 December 2020 and 8 July 2021. We selected all symptomatic children who tested positive for SARS-CoV-2 and were proxy-reported at least weekly, within two timeframes: 28 December 2020 to 6 May 2021 (Alpha (B.1.1.7), the main UK circulating variant) and 26 May to 8 July 2021 (Delta, the main UK circulating variant), with all children unvaccinated (as per national policy at the time). We assessed illness profiles (symptom prevalence, duration, and burden), hospital presentation, and presence of long (≥28 day) illness, and calculated odds ratios for symptoms presenting within the first 28 days of illness. RESULTS: 694 (276 younger (5-11 years), 418 older (12-17 years)) symptomatic children tested positive for SARS-CoV-2 with Alpha infection and 706 (227 younger and 479 older) children with Delta infection. Median illness duration was short with either variant (overall cohort: 5 days (IQR 2-9.75) with Alpha, 5 days (IQR 2-9) with Delta). The seven most prevalent symptoms were common to both variants. Symptom burden over the first 28 days was slightly greater with Delta compared with Alpha infection (in younger children, 3 (IQR 2-5) symptoms with Alpha, 4 (IQR 2-7) with Delta; in older children, 5 (IQR 3-8) symptoms with Alpha, 6 (IQR 3-9) with Delta infection ). The odds of presenting several symptoms were higher with Delta than Alpha infection, including headache and fever. Few children presented to hospital, and long illness duration was uncommon, with either variant. CONCLUSIONS: COVID-19 in UK school-aged children due to SARS-CoV-2 Delta strain B.1.617.2 resembles illness due to the Alpha variant B.1.1.7., with short duration and similar symptom burden.

12.
Lancet Infect Dis ; 22(1): 43-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34480857

RESUMEN

BACKGROUND: COVID-19 vaccines show excellent efficacy in clinical trials and effectiveness in real-world data, but some people still become infected with SARS-CoV-2 after vaccination. This study aimed to identify risk factors for post-vaccination SARS-CoV-2 infection and describe the characteristics of post-vaccination illness. METHODS: This prospective, community-based, nested, case-control study used self-reported data (eg, on demographics, geographical location, health risk factors, and COVID-19 test results, symptoms, and vaccinations) from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile phone app. For the risk factor analysis, cases had received a first or second dose of a COVID-19 vaccine between Dec 8, 2020, and July 4, 2021; had either a positive COVID-19 test at least 14 days after their first vaccination (but before their second; cases 1) or a positive test at least 7 days after their second vaccination (cases 2); and had no positive test before vaccination. Two control groups were selected (who also had not tested positive for SARS-CoV-2 before vaccination): users reporting a negative test at least 14 days after their first vaccination but before their second (controls 1) and users reporting a negative test at least 7 days after their second vaccination (controls 2). Controls 1 and controls 2 were matched (1:1) with cases 1 and cases 2, respectively, by the date of the post-vaccination test, health-care worker status, and sex. In the disease profile analysis, we sub-selected participants from cases 1 and cases 2 who had used the app for at least 14 consecutive days after testing positive for SARS-CoV-2 (cases 3 and cases 4, respectively). Controls 3 and controls 4 were unvaccinated participants reporting a positive SARS-CoV-2 test who had used the app for at least 14 consecutive days after the test, and were matched (1:1) with cases 3 and 4, respectively, by the date of the positive test, health-care worker status, sex, body-mass index (BMI), and age. We used univariate logistic regression models (adjusted for age, BMI, and sex) to analyse the associations between risk factors and post-vaccination infection, and the associations of individual symptoms, overall disease duration, and disease severity with vaccination status. FINDINGS: Between Dec 8, 2020, and July 4, 2021, 1 240 009 COVID Symptom Study app users reported a first vaccine dose, of whom 6030 (0·5%) subsequently tested positive for SARS-CoV-2 (cases 1), and 971 504 reported a second dose, of whom 2370 (0·2%) subsequently tested positive for SARS-CoV-2 (cases 2). In the risk factor analysis, frailty was associated with post-vaccination infection in older adults (≥60 years) after their first vaccine dose (odds ratio [OR] 1·93, 95% CI 1·50-2·48; p<0·0001), and individuals living in highly deprived areas had increased odds of post-vaccination infection following their first vaccine dose (OR 1·11, 95% CI 1·01-1·23; p=0·039). Individuals without obesity (BMI <30 kg/m2) had lower odds of infection following their first vaccine dose (OR 0·84, 95% CI 0·75-0·94; p=0·0030). For the disease profile analysis, 3825 users from cases 1 were included in cases 3 and 906 users from cases 2 were included in cases 4. Vaccination (compared with no vaccination) was associated with reduced odds of hospitalisation or having more than five symptoms in the first week of illness following the first or second dose, and long-duration (≥28 days) symptoms following the second dose. Almost all symptoms were reported less frequently in infected vaccinated individuals than in infected unvaccinated individuals, and vaccinated participants were more likely to be completely asymptomatic, especially if they were 60 years or older. INTERPRETATION: To minimise SARS-CoV-2 infection, at-risk populations must be targeted in efforts to boost vaccine effectiveness and infection control measures. Our findings might support caution around relaxing physical distancing and other personal protective measures in the post-vaccination era, particularly around frail older adults and individuals living in more deprived areas, even if these individuals are vaccinated, and might have implications for strategies such as booster vaccinations. FUNDING: ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, and the Alzheimer's Society.


Asunto(s)
COVID-19/epidemiología , Aplicaciones Móviles/estadística & datos numéricos , Vacunación/estadística & datos numéricos , Eficacia de las Vacunas , Adulto , Anciano , COVID-19/prevención & control , Prueba de COVID-19/estadística & datos numéricos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Autoinforme , Reino Unido/epidemiología , Adulto Joven
13.
Front Physiol ; 12: 716597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603077

RESUMEN

Parameterised patient-specific models of the heart enable quantitative analysis of cardiac function as well as estimation of regional stress and intrinsic tissue stiffness. However, the development of personalised models and subsequent simulations have often required lengthy manual setup, from image labelling through to generating the finite element model and assigning boundary conditions. Recently, rapid patient-specific finite element modelling has been made possible through the use of machine learning techniques. In this paper, utilising multiple neural networks for image labelling and detection of valve landmarks, together with streamlined data integration, a pipeline for generating patient-specific biventricular models is applied to clinically-acquired data from a diverse cohort of individuals, including hypertrophic and dilated cardiomyopathy patients and healthy volunteers. Valve motion from tracked landmarks as well as cavity volumes measured from labelled images are used to drive realistic motion and estimate passive tissue stiffness values. The neural networks are shown to accurately label cardiac regions and features for these diverse morphologies. Furthermore, differences in global intrinsic parameters, such as tissue anisotropy and normalised active tension, between groups illustrate respective underlying changes in tissue composition and/or structure as a result of pathology. This study shows the successful application of a generic pipeline for biventricular modelling, incorporating artificial intelligence solutions, within a diverse cohort.

14.
EClinicalMedicine ; 42: 101212, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34873584

RESUMEN

BACKGROUND: Identifying and testing individuals likely to have SARS-CoV-2 is critical for infection control, including post-vaccination. Vaccination is a major public health strategy to reduce SARS-CoV-2 infection globally. Some individuals experience systemic symptoms post-vaccination, which overlap with COVID-19 symptoms. This study compared early post-vaccination symptoms in individuals who subsequently tested positive or negative for SARS-CoV-2, using data from the COVID Symptom Study (CSS) app. METHODS: We conducted a prospective observational study in 1,072,313 UK CSS participants who were asymptomatic when vaccinated with Pfizer-BioNTech mRNA vaccine (BNT162b2) or Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) between 8 December 2020 and 17 May 2021, who subsequently reported symptoms within seven days (N=362,770) (other than local symptoms at injection site) and were tested for SARS-CoV-2 (N=14,842), aiming to differentiate vaccination side-effects per se from superimposed SARS-CoV-2 infection. The post-vaccination symptoms and SARS-CoV-2 test results were contemporaneously logged by participants. Demographic and clinical information (including comorbidities) were recorded. Symptom profiles in individuals testing positive were compared with a 1:1 matched population testing negative, including using machine learning and multiple models considering UK testing criteria. FINDINGS: Differentiating post-vaccination side-effects alone from early COVID-19 was challenging, with a sensitivity in identification of individuals testing positive of 0.6 at best. Most of these individuals did not have fever, persistent cough, or anosmia/dysosmia, requisite symptoms for accessing UK testing; and many only had systemic symptoms commonly seen post-vaccination in individuals negative for SARS-CoV-2 (headache, myalgia, and fatigue). INTERPRETATION: Post-vaccination symptoms per se cannot be differentiated from COVID-19 with clinical robustness, either using symptom profiles or machine-derived models. Individuals presenting with systemic symptoms post-vaccination should be tested for SARS-CoV-2 or quarantining, to prevent community spread. FUNDING: UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Chronic Disease Research Foundation, Zoe Limited.

15.
IEEE J Biomed Health Inform ; 25(9): 3541-3553, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33684050

RESUMEN

Automatic quantification of the left ventricle (LV) from cardiac magnetic resonance (CMR) images plays an important role in making the diagnosis procedure efficient, reliable, and alleviating the laborious reading work for physicians. Considerable efforts have been devoted to LV quantification using different strategies that include segmentation-based (SG) methods and the recent direct regression (DR) methods. Although both SG and DR methods have obtained great success for the task, a systematic platform to benchmark them remains absent because of differences in label information during model learning. In this paper, we conducted an unbiased evaluation and comparison of cardiac LV quantification methods that were submitted to the Left Ventricle Quantification (LVQuan) challenge, which was held in conjunction with the Statistical Atlases and Computational Modeling of the Heart (STACOM) workshop at the MICCAI 2018. The challenge was targeted at the quantification of 1) areas of LV cavity and myocardium, 2) dimensions of the LV cavity, 3) regional wall thicknesses (RWT), and 4) the cardiac phase, from mid-ventricle short-axis CMR images. First, we constructed a public quantification dataset Cardiac-DIG with ground truth labels for both the myocardium mask and these quantification targets across the entire cardiac cycle. Then, the key techniques employed by each submission were described. Next, quantitative validation of these submissions were conducted with the constructed dataset. The evaluation results revealed that both SG and DR methods can offer good LV quantification performance, even though DR methods do not require densely labeled masks for supervision. Among the 12 submissions, the DR method LDAMT offered the best performance, with a mean estimation error of 301 mm 2 for the two areas, 2.15 mm for the cavity dimensions, 2.03 mm for RWTs, and a 9.5% error rate for the cardiac phase classification. Three of the SG methods also delivered comparable performances. Finally, we discussed the advantages and disadvantages of SG and DR methods, as well as the unsolved problems in automatic cardiac quantification for clinical practice applications.


Asunto(s)
Ventrículos Cardíacos , Imagen por Resonancia Cinemagnética , Corazón , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
16.
Lancet Child Adolesc Health ; 5(10): 708-718, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358472

RESUMEN

BACKGROUND: In children, SARS-CoV-2 infection is usually asymptomatic or causes a mild illness of short duration. Persistent illness has been reported; however, its prevalence and characteristics are unclear. We aimed to determine illness duration and characteristics in symptomatic UK school-aged children tested for SARS-CoV-2 using data from the COVID Symptom Study, one of the largest UK citizen participatory epidemiological studies to date. METHODS: In this prospective cohort study, data from UK school-aged children (age 5-17 years) were reported by an adult proxy. Participants were voluntary, and used a mobile application (app) launched jointly by Zoe Limited and King's College London. Illness duration and symptom prevalence, duration, and burden were analysed for children testing positive for SARS-CoV-2 for whom illness duration could be determined, and were assessed overall and for younger (age 5-11 years) and older (age 12-17 years) groups. Children with longer than 1 week between symptomatic reports on the app were excluded from analysis. Data from symptomatic children testing negative for SARS-CoV-2, matched 1:1 for age, gender, and week of testing, were also assessed. FINDINGS: 258 790 children aged 5-17 years were reported by an adult proxy between March 24, 2020, and Feb 22, 2021, of whom 75 529 had valid test results for SARS-CoV-2. 1734 children (588 younger and 1146 older children) had a positive SARS-CoV-2 test result and calculable illness duration within the study timeframe (illness onset between Sept 1, 2020, and Jan 24, 2021). The most common symptoms were headache (1079 [62·2%] of 1734 children), and fatigue (954 [55·0%] of 1734 children). Median illness duration was 6 days (IQR 3-11) versus 3 days (2-7) in children testing negative, and was positively associated with age (Spearman's rank-order rs 0·19, p<0·0001). Median illness duration was longer for older children (7 days, IQR 3-12) than younger children (5 days, 2-9). 77 (4·4%) of 1734 children had illness duration of at least 28 days, more commonly in older than younger children (59 [5·1%] of 1146 older children vs 18 [3·1%] of 588 younger children; p=0·046). The commonest symptoms experienced by these children during the first 4 weeks of illness were fatigue (65 [84·4%] of 77), headache (60 [77·9%] of 77), and anosmia (60 [77·9%] of 77); however, after day 28 the symptom burden was low (median 2 symptoms, IQR 1-4) compared with the first week of illness (median 6 symptoms, 4-8). Only 25 (1·8%) of 1379 children experienced symptoms for at least 56 days. Few children (15 children, 0·9%) in the negatively tested cohort had symptoms for at least 28 days; however, these children experienced greater symptom burden throughout their illness (9 symptoms, IQR 7·7-11·0 vs 8, 6-9) and after day 28 (5 symptoms, IQR 1·5-6·5 vs 2, 1-4) than did children who tested positive for SARS-CoV-2. INTERPRETATION: Although COVID-19 in children is usually of short duration with low symptom burden, some children with COVID-19 experience prolonged illness duration. Reassuringly, symptom burden in these children did not increase with time, and most recovered by day 56. Some children who tested negative for SARS-CoV-2 also had persistent and burdensome illness. A holistic approach for all children with persistent illness during the pandemic is appropriate. FUNDING: Zoe Limited, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, and Alzheimer's Society.


Asunto(s)
COVID-19/epidemiología , COVID-19/patología , SARS-CoV-2/aislamiento & purificación , Adolescente , COVID-19/diagnóstico , COVID-19/virología , Prueba de COVID-19 , Niño , Preescolar , Ciencia Ciudadana , Estudios de Cohortes , Costo de Enfermedad , Femenino , Humanos , Masculino , Estudios Prospectivos , SARS-CoV-2/patogenicidad , Reino Unido
17.
medRxiv ; 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34268526

RESUMEN

BACKGROUND: Mental health issues have been reported after SARS-CoV-2 infection. However, comparison to prevalence in uninfected individuals and contribution from common risk factors (e.g., obesity, comorbidities) have not been examined. We identified how COVID-19 relates to mental health in the large community-based COVID Symptom Study. METHODS: We assessed anxiety and depression symptoms using two validated questionnaires in 413,148 individuals between February and April 2021; 26,998 had tested positive for SARS-CoV-2. We adjusted for physical and mental pre-pandemic comorbidities, BMI, age, and sex. FINDINGS: Overall, 26.4% of participants met screening criteria for general anxiety and depression. Anxiety and depression were slightly more prevalent in previously SARS-CoV-2 positive (30.4%) vs. negative (26.1%) individuals. This association was small compared to the effect of an unhealthy BMI and the presence of other comorbidities, and not evident in younger participants (≤40 years). Findings were robust to multiple sensitivity analyses. Association between SARS-CoV-2 infection and anxiety and depression was stronger in individuals with recent (<30 days) vs. more distant (>120 days) infection, suggesting a short-term effect. INTERPRETATION: A small association was identified between SARS-CoV-2 infection and anxiety and depression symptoms. The proportion meeting criteria for self-reported anxiety and depression disorders is only slightly higher than pre-pandemic. FUNDING: Zoe Limited, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, Medical Research Council UK.

18.
Sci Data ; 8(1): 297, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811392

RESUMEN

The Covid Symptom Study, a smartphone-based surveillance study on COVID-19 symptoms in the population, is an exemplar of big data citizen science. As of May 23rd, 2021, over 5 million participants have collectively logged over 360 million self-assessment reports since its introduction in March 2020. The success of the Covid Symptom Study creates significant technical challenges around effective data curation. The primary issue is scale. The size of the dataset means that it can no longer be readily processed using standard Python-based data analytics software such as Pandas on commodity hardware. Alternative technologies exist but carry a higher technical complexity and are less accessible to many researchers. We present ExeTera, a Python-based open source software package designed to provide Pandas-like data analytics on datasets that approach terabyte scales. We present its design and capabilities, and show how it is a critical component of a data curation pipeline that enables reproducible research across an international research group for the Covid Symptom Study.


Asunto(s)
COVID-19/epidemiología , Ciencia Ciudadana , Curaduría de Datos , Macrodatos , Ciencia de los Datos , Conjuntos de Datos como Asunto , Monitoreo Epidemiológico , Humanos , Aplicaciones Móviles , Teléfono Inteligente , Programas Informáticos
19.
Artículo en Inglés | MEDLINE | ID: mdl-34286332

RESUMEN

One of the challenges in developing deep learning algorithms for medical image segmentation is the scarcity of annotated training data. To overcome this limitation, data augmentation and semi-supervised learning (SSL) methods have been developed. However, these methods have limited effectiveness as they either exploit the existing data set only (data augmentation) or risk negative impact by adding poor training examples (SSL). Segmentations are rarely the final product of medical image analysis -they are typically used in downstream tasks to infer higher-order patterns to evaluate diseases. Clinicians take into account a wealth of prior knowledge on biophysics and physiology when evaluating image analysis results. We have used these clinical assessments in previous works to create robust quality-control (QC) classifiers for automated cardiac magnetic resonance (CMR) analysis. In this paper, we propose a novel scheme that uses QC of the downstream task to identify high quality outputs of CMR segmentation networks, that are subsequently utilised for further network training. In essence, this provides quality-aware augmentation of training data in a variant of SSL for segmentation networks (semiQCSeg). We evaluate our approach in two CMR segmentation tasks (aortic and short axis cardiac volume segmentation) using UK Biobank data and two commonly used network architectures (U-net and a Fully Convolutional Network) and compare against supervised and SSL strategies. We show that semiQCSeg improves training of the segmentation networks. It decreases the need for labelled data, while outperforming the other methods in terms of Dice and clinical metrics. SemiQCSeg can be an efficient approach for training segmentation networks for medical image data when labelled datasets are scarce.

20.
Heart Rhythm ; 16(10): 1475-1483, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30930329

RESUMEN

BACKGROUND: Cardiac resynchronization therapy (CRT) increases the risk of ventricular tachycardia (VT) in patients with ischemic cardiomyopathy (ICM) when the left ventricular (LV) epicardial lead is implanted in proximity to scar. OBJECTIVE: The purpose of this study was to determine the mechanisms underpinning this risk by investigating the effects of pacing on local electrophysiology (EP) in relation to scar that provides a substrate for VT in ICM patients undergoing CRT. METHODS: Imaging data from ICM patients (n = 24) undergoing CRT were used to create patient-specific LV anatomic computational models including scar morphology. Simulations of LV epicardial pacing at 0.2-4.5 cm from the scar were performed using EP models of chronic infarct and heart failure (HF). Dispersion of repolarization and the vulnerable window were computed as surrogates for VT risk. RESULTS: Simulations predict that pacing in proximity to scar (0.2 cm) compared to more distant pacing to a scar (4.5 cm) significantly (P <.01) increased dispersion of repolarization in the vicinity of the scar and widened (P <.01) the vulnerable window, increasing the likelihood of unidirectional block. Moreover, slow conduction during HF further increased dispersion (∼194%). Analysis of variance and post hoc tests show significantly (P <.01) reduced repolarization dispersion when pacing ≥3.5 cm from the scar compared to pacing at 0.2 cm. CONCLUSION: Increased dispersion of repolarization in the vicinity of the scar and widening of the vulnerable window when pacing in proximity to scar provides a mechanistic explanation for VT induction in ICM-CRT with lead placement proximal to scar. Pacing 3.5 cm or more from scar may avoid increasing VT risk in ICM-CRT patients.


Asunto(s)
Terapia de Resincronización Cardíaca/efectos adversos , Cardiomiopatía Dilatada/diagnóstico por imagen , Insuficiencia Cardíaca/terapia , Imagenología Tridimensional , Isquemia Miocárdica/diagnóstico por imagen , Taquicardia Ventricular/diagnóstico por imagen , Anciano , Análisis de Varianza , Mapeo del Potencial de Superficie Corporal/métodos , Terapia de Resincronización Cardíaca/métodos , Cardiomiopatía Dilatada/fisiopatología , Cicatriz/fisiopatología , Estudios de Cohortes , Susceptibilidad a Enfermedades , Femenino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/mortalidad , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Cinemagnética/métodos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/mortalidad , Isquemia Miocárdica/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Análisis de Supervivencia , Taquicardia Ventricular/etiología , Taquicardia Ventricular/mortalidad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA