Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuromodulation ; 27(3): 509-519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797194

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care. OBJECTIVE/HYPOTHESIS: Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson's disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment. MATERIALS AND METHODS: Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 µs, 4) MBP at 60 µs, and 5) MBP at 90 µs. RESULTS: Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively. CONCLUSIONS: This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Proyectos Piloto , Núcleo Subtalámico/fisiología
2.
J Neurophysiol ; 129(6): 1492-1504, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37198135

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Ganglios Basales , Temblor/terapia , Ritmo beta
3.
Neurosurg Rev ; 45(4): 2593-2613, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35511309

RESUMEN

The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.


Asunto(s)
Estimulación Encefálica Profunda , Núcleos Talámicos Intralaminares , Enfermedad de Parkinson , Núcleo Subtalámico , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia , Calidad de Vida , Núcleo Subtalámico/cirugía
4.
Stereotact Funct Neurosurg ; 99(2): 171-175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33227781

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is an effective surgical treatment for movement disorders. Early versions of implantable systems delivered stimulation with constant voltage (CV); however, advances in available and newer platforms have permitted programming in constant current (CC). From a treatment management perspective, there are theoretical advantages of CC stimulation. In this case series, we present clinical evidence supporting the maintenance of current regardless of changes to impedance. MATERIALS AND METHODS: This case series included 3 patients with Parkinson's disease status post-bilateral subthalamic nucleus DBS. Patients in this series self-reported intermittent diplopia with pressure applied to the scalp. Patients were subsequently examined and converted from CV to CC and re-examined. Impedances were checked prior to and after conversion from CV to CC as well as while applying pressure to the scalp that induced the adverse effects. RESULTS: Across patients, we observed that compression of the scalp overlying the connector, while patients were maintained in CV, consistently and objectively induced unilateral adduction of an eye. In addition, during scalp compression, while in CV, impedance was reduced, which would increase current delivery. Converting the patients to CC stimulation without changing other stimulation parameters eliminated diplopia and objective findings of eye deviation with compression of the scalp overlying the hardware despite changes in impedance. CONCLUSIONS: In this case series, we provide clinical support for the principal differences between CV and CC stimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Impedancia Eléctrica , Humanos , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
5.
Stereotact Funct Neurosurg ; 99(5): 443-450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33902054

RESUMEN

INTRODUCTION: Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson's disease patients to improve targeting for deep brain stimulation. METHODS: We conducted a prospective study to optimize and evaluate an MRI sequence to visualize the rostral zona incerta in patients with Parkinson's disease (n = 31) and other movement disorders (n = 13). We performed a contrast-to-noise ratio analysis of specific regions of interest to quantitatively assess visual discrimination of relevant deep brain structures in the optimized MRI sequence. Regions of interest were independently assessed by 2 neuroradiologists, and interrater reliability was assessed. RESULTS: Rostral zona incerta and subthalamic nucleus were well delineated in our 5.5-min MRI sequence, indicated by excellent interrater agreement between neuroradiologists for region-of-interest measurements (>0.90 intraclass coefficient). Mean contrast-to-noise ratio was high for both rostral zona incerta (6.39 ± 3.37) and subthalamic nucleus (17.27 ± 5.61) relative to adjacent white matter. There was no significant difference between mean signal intensities or contrast-to-noise ratio for Parkinson's and non-Parkinson's patients for either structure. DISCUSSION/CONCLUSION: Our optimized coronal gradient echo MRI sequence delineates subcortical structures relevant to traditional and novel deep brain stimulation targets, including the zona incerta, with high contrast-to-noise. Future studies will prospectively apply this sequence to surgical planning and postimplantation outcomes.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Zona Incerta , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Estudios Prospectivos , Reproducibilidad de los Resultados , Zona Incerta/diagnóstico por imagen
6.
J Neurol Neurosurg Psychiatry ; 91(9): 928-937, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32651244

RESUMEN

OBJECTIVES: Deep brain stimulation (DBS), targeting the subthalamic nucleus (STN) and globus pallidus interna, is a surgical therapy with class 1 evidence for Parkinson's disease (PD). Bilateral DBS electrodes may be implanted within a single operation or in separate staged surgeries with an interval of time that varies patient by patient. In this study, we used the variation in the timing of implantation from the first to the second implantation allowing for examination of potential volumetric changes of the basal ganglia in patients with PD who underwent staged STN DBS. METHODS: Thirty-two patients with a mean time interval between implantations of 141.8 (±209.1; range: 7-700) days and mean duration of unilateral stimulation of 244.7 (±227.7; range: 20-672) days were included in this study. Using volumetric analysis of whole hemisphere and subcortical structures, we observed whether implantation or stimulation affected structural volume. RESULTS: We observed that DBS implantation, but not the duration of stimulation, induced a significant reduction of volume in the caudate, pallidum, putamen and thalamus ipsilateral to the implanted hemisphere. These findings were not dependent on the trajectory of the implanted electrode nor on first surgery pneumocephalus (0.07%: %Δ for intracranial volume between first and second surgery). In addition, unique regional atrophy differences were evident in each of the structures. CONCLUSION: Our results demonstrate that DBS implantation surgery may affect hemisphere volume at the level of subcortical structures connected to the surgical target.


Asunto(s)
Núcleo Caudado/patología , Globo Pálido/patología , Enfermedad de Parkinson/terapia , Putamen/patología , Tálamo/patología , Atrofia/patología , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Femenino , Globo Pálido/fisiología , Humanos , Masculino , Persona de Mediana Edad , Núcleo Subtalámico/fisiología , Factores de Tiempo
7.
Mov Disord ; 33(6): 960-965, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29665080

RESUMEN

OBJECTIVES: The objective of this study was to determine phenotypic features that differentiate nonparkinsonian first-degree relatives of PD leucine-rich repeat kinase 2 (LRRK2) G2019S multiplex families, regardless of carrier status, from healthy controls because nonparkinsonian individuals in multiplex families seem to share a propensity to present neurological features. METHODS: We included nonparkinsonian first-degree relatives of LRRK2 G2019S familial PD cases and unrelated healthy controls participating in established multiplex family LRRK2 cohorts. Study participants underwent neurologic assessment including cognitive screening, olfaction testing, and questionnaires for daytime sleepiness, depression, and anxiety. We used a multiple logistic regression model with backward variable selection, validated with bootstrap resampling, to establish the best combination of motor and nonmotor features that differentiates nonparkinsonian first-degree relatives of LRRK2 G2019S familial PD cases from unrelated healthy controls. RESULTS: We included 142 nonparkinsonian family members and 172 unrelated healthy controls. The combination of past or current symptoms of anxiety (adjusted odds ratio, 4.16; 95% confidence interval, 2.01-8.63), less daytime sleepiness (adjusted odds ratio [1 unit], 0.90; 95% confidence interval, 0.83-0.97], and worse motor UPDRS score (adjusted odds ratio [1 unit], 1.4; 95% confidence interval, 1.20-1.67) distinguished nonparkinsonian family members, regardless of LRRK2 G2019S mutation status, from unrelated healthy controls. The model accuracy was good (area under the curve = 79.3%). CONCLUSIONS: A set of motor and nonmotor features distinguishes first-degree relatives of LRRK2 G2019S probands, regardless of mutation status, from unrelated healthy controls. Environmental or non-LRRK2 genetic factors in LRRK2-associated PD may influence penetrance of the LRRK2 G2019S mutation. The relationship of these features to actual PD risk requires longitudinal observation of LRRK2 familial PD cohorts. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Salud de la Familia , Glicina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Serina/genética , Adulto , Anciano , Estudios de Cohortes , Estudios Transversales , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Stereotact Funct Neurosurg ; 96(6): 379-391, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30654368

RESUMEN

BACKGROUND/AIMS: Interleaving stimulation (ILS) in deep brain stimulation (DBS) provides individualized stimulation of 2 contacts delivered in alternating order. Currently, limited information on the utility of ILS exists. The aims of this study were to determine the practical applications and outcomes of ILS DBS in Parkinson's disease (PD), tremor, and dystonia. METHODS: We performed a single-center, unblinded, retrospective chart review of all patients with DBS attempted on ILS at our referral center assessing for rationale and outcomes. RESULTS: Fifty patients (PD, n = 27; tremor, n = 7; dystonia, n = 16 patients) tried ILS for 2 rationales: management of adverse effects (n = 29) and to improve clinical efficacy (n = 21). A total of 19 patients demonstrated improvement with ILS for adverse effect management predominately for the treatment of dyskinesias (n = 12). In the vast majority of dyskinetic patients, a contact added into the rostral zona incerta with ILS was performed. Nine out of 21 patients demonstrated improved clinical efficacy with ILS with all 6 PD patients who tried ILS for this rationale demonstrating benefit. CONCLUSIONS: In PD, ILS provided benefits for dyskinesias and parkinsonism, with minimal improvement of other adverse effects. In tremor and dystonia, marginal effects in terms of mitigation of adverse effects and improvement of clinical outcomes were evident.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Distonía/cirugía , Enfermedad de Parkinson/cirugía , Temblor/cirugía , Adulto , Anciano , Distonía/diagnóstico , Distonía/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Estudios Retrospectivos , Resultado del Tratamiento , Temblor/diagnóstico , Temblor/fisiopatología
9.
J Neurol Neurosurg Psychiatry ; 88(5): 445-451, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27965397

RESUMEN

Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterised by complex motor enactment of dreams and is a potential prodromal marker of Parkinson's disease (PD). Of note, patients with PD observed during RBD episodes exhibit improved motor function, relative to baseline states during wake periods. Here, we review recent epidemiological and mechanistic findings supporting the prodromal value of RBD for PD, incorporating clinical and electrophysiological studies. Explanations for the improved motor function during RBD episodes are evaluated in light of recent publications. In addition, we present preliminary findings describing changes in the activity of the basal ganglia across the sleep-wake cycle that contribute to our understanding of RBD.


Asunto(s)
Enfermedad de Parkinson/epidemiología , Trastorno de la Conducta del Sueño REM/epidemiología , Sueños/psicología , Humanos , Polisomnografía/métodos , Trastorno de la Conducta del Sueño REM/diagnóstico , Índice de Severidad de la Enfermedad
10.
Mov Disord ; 32(4): 610-614, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28071824

RESUMEN

BACKGROUND: Heart rate variability is reduced in idiopathic PD, indicating cardiac autonomic dysfunction likely resulting from peripheral autonomic synucleinopathy. Little is known about heart rate variability in leucine-rich repeat kinase 2-associated PD. OBJECTIVES: This study investigated heart rate variability in LRRK2-associated PD. METHODS: Resting electrocardiograms were obtained from 20 individuals with LRRK2-associated PD, 37 nonmanifesting carriers, 48 related noncarriers, 26 idiopathic PD patients, and 32 controls. Linear regression modelling compared time and frequency domain values, adjusting for age, sex, heart rate, and disease duration. RESULTS: Low-frequency power and the ratio of low-high frequency power were reduced in idiopathic PD versus controls (P < .008, P < .029 respectively). In contrast, individuals with LRRK2-associated PD were not statistically different from controls in any parameter measured. Furthermore, all parameters trended toward being higher in LRRK2-associated PD when compared with idiopathic PD. CONCLUSIONS: Heart rate variability may remain intact in LRRK2-associated PD, adding to a growing literature supporting clinical-pathologic differences between LRRK2-associated and idiopathic PD. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Cardiopatías/etiología , Frecuencia Cardíaca/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Anciano , Electrocardiografía , Femenino , Estudios de Asociación Genética , Glicina/genética , Cardiopatías/genética , Humanos , Masculino , Persona de Mediana Edad , Serina/genética , Índice de Severidad de la Enfermedad
12.
Front Psychiatry ; 15: 1435109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071229

RESUMEN

Substance use disorders are prevalent, causing extensive morbidity and mortality worldwide. Evidence-based treatments are of low to moderate effect size. Growth in the neurobiological understanding of addiction (e.g., craving) along with technological advancements in neuromodulation have enabled an evaluation of neurosurgical treatments for substance use disorders. Deep brain stimulation (DBS) involves surgical implantation of leads into brain targets and subcutaneous tunneling to connect the leads to a programmable implanted pulse generator (IPG) under the skin of the chest. DBS allows direct testing of neurobiologically-guided hypotheses regarding the etiology of substance use disorders in service of developing more effective treatments. Early studies, although with multiple limitations, have been promising. Still the authors express caution regarding implementation of DBS studies in this population and emphasize the importance of safeguards to ensure patient safety and meaningful study results. In this perspectives article, we review lessons learned through the years of planning an ongoing trial of DBS for methamphetamine use disorder.

13.
Neurology ; 100(15): e1529-e1539, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36657992

RESUMEN

BACKGROUND AND OBJECTIVES: Multiple system atrophy (MSA) is a progressive neurodegenerative disorder caused by the abnormal accumulation of α-synuclein in the nervous system. Clinical features include autonomic and motor dysfunction, which overlap with those of Parkinson disease (PD), particularly at early disease stages. There is an unmet need for accurate diagnostic and prognostic biomarkers for MSA and, specifically, a critical need to distinguish MSA from other synucleinopathies, particularly PD. The purpose of the study was to develop a unique cutaneous pathologic signature of phosphorylated α-synuclein that could distinguish patients with MSA from patients with PD and healthy controls. METHODS: We studied 31 patients with MSA and 54 patients with PD diagnosed according to current clinical consensus criteria. We also included 24 matched controls. All participants underwent neurologic examinations, autonomic testing, and skin biopsies at 3 locations. The density of intraepidermal, sudomotor, and pilomotor nerve fibers was measured. The deposition of phosphorylated α-synuclein was quantified. Results were compared with clinical rating assessments and autonomic function test results. RESULTS: Patients with PD had reduced nerve fiber densities compared with patients with MSA (p < 0.05, all fiber types). All patients with MSA and 51/54 with PD had evidence of phosphorylated α-synuclein in at least one skin biopsy. No phosphorylated α-synuclein was detected in controls. Patients with MSA had greater phosphorylated α-synuclein deposition (p < 0.0001) and more widespread peripheral distribution (p < 0.0001) than patients with PD. These results provided >90% sensitivity and specificity in distinguishing between the 2 disorders. DISCUSSION: α-synuclein is present in the peripheral autonomic nerves of patients with MSA and when combined with synuclein distribution accurately distinguishes MSA from PD. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that measurement of phosphorylated α-synuclein in skin biopsies can differentiate patients with MSA from those with PD.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Atrofia de Múltiples Sistemas/diagnóstico , Atrofia de Múltiples Sistemas/patología , Piel/patología , Degeneración Nerviosa/patología
14.
Front Neurol ; 14: 1233684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602243

RESUMEN

Introduction: Deep brain stimulation (DBS) is an effective and standard-of-care therapy for Parkinson's Disease and other movement disorders when symptoms are inadequately controlled with conventional medications. It requires expert care for patient selection, surgical targeting, and therapy titration. Despite the known benefits, racial/ethnic disparities in access have been reported. Technological advancements with smartphone-enabled devices may influence racial disparities. Real-world evidence investigations can shed further light on barriers to access and demographic disparities for DBS patients. Methods: A retrospective cross-sectional study was performed using Medicare claims linked with manufacturer patient data tracking to analyze 3,869 patients who received DBS. Patients were divided into two categories: traditional omnidirectional DBS systems with dedicated proprietary controllers ("traditional"; n = 3,256) and directional DBS systems with smart controllers ("smartphone-enabled"; n = 613). Demographics including age, sex, and self-identified race/ethnicity were compared. Categorical demographics, including race/ethnicity and distance from implanting facility, were analyzed for the entire population. Results: A significant disparity in DBS utilization was evident. White individuals comprised 91.4 and 89.9% of traditional and smartphone-enabled DBS groups, respectively. Non-White patients were significantly more likely to live closer to implanting facilities compared with White patients. Conclusion: There is great racial disparity in utilization of DBS therapy. Smartphone-enabled systems did not significantly impact racial disparities in receiving DBS. Minoritized patients were more likely to live closer to their implanting facility than White patients. Further research is warranted to identify barriers to access for minoritized patients to receive DBS. Technological advancements should consider the racial discrepancy of DBS utilization in future developments.

15.
Mov Disord Clin Pract ; 10(6): 987-991, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332654

RESUMEN

Background: Technological advancements in deep brain stimulation (DBS) require methodological changes in programming. Fractionalization poses significant practical challenges for the most common approach for assessing DBS efficacy, monopolar review (MR). Objectives: Two DBS programming methods: MR and fixed parameter vertical and horizontal fractionalization (FPF) were compared. Methods: A two-phase process of vertical and horizontal FPF was performed. MR was conducted thereafter. After a short wash-out period, both optimal configurations determined by MR and FPF were tested in a double-blind randomized manner. Results: Seven PD patients were enrolled, providing 11 hemispheres to compare the two conditions. In all subjects, the blinded examiner selected a directional or fractionalization configuration. There was no significant difference in clinical benefits between MR and FPF. FPF was the preferred method for initial programming as selected by subject and clinician. Conclusions: FPF programming is a viable and efficient methodology that may be incorporated into clinical practice.

16.
Mov Disord Clin Pract ; 10(1): 94-100, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704077

RESUMEN

Background: Functional movement disorders (FMD) are a commonly under-recognized diagnosis in patients with underlying neurodegenerative diseases. FMD have been observed in patients undergoing deep brain stimulation (DBS) for Parkinson's disease (PD) and other movement disorders. The prevalence of coexisting FMD among movement disorder-related DBS patients is unknown, and it may occur more often than previously recognized. Methods: We retrospectively assessed the relative prevalence and clinical characteristics of FMD occurring post-DBS, in PD and dystonia patients (FMD+, n = 29). We compared this cohort with age at surgery-, sex-, and diagnosis-matched subjects without FMD post-DBS (FMD-, n = 29). Results: Both the FMD prevalence (0.2%-2.1%) and the number of cases/DBS procedures/year varied across centers (0.15-3.65). A total of nine of 29 FMD+ cases reported worse outcomes following DBS. Although FMD+ and FMD- manifested similar features, FMD+ showed higher psychiatric comorbidity. Conclusions: DBS may be complicated by the development of FMD in a subset of patients, particularly those with pre-morbid psychiatric conditions.

17.
World Neurosurg ; 162: e526-e533, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306197

RESUMEN

BACKGROUND: Advanced therapies in neurosurgery, such as deep brain stimulation (DBS), would benefit from improved patient education materials. Three-dimensional (3D) printed anatomical models represent a recent development for improving patient education for neurosurgical procedures. METHODS: In this study, 40 patients undergoing DBS surgery consultation were randomly assigned to 1 of 2 groups: an experimental group, which received a demonstration of DBS therapeutic neuroanatomical targets in a 3D printed brain model plus standard patient education (PE), or a control group, which received standard PE alone. RESULTS: Patients in the DBS model plus PE group showed a significant increase in patient confidence and understanding of the brain structures targeted during a DBS procedure compared with patients in the PE-only group (P < 0.01). There was no difference in perceived risk, comfort, or anxiety related to the procedure. CONCLUSIONS: In the first randomized controlled study to our knowledge of 3D printed models for DBS consultation, our results demonstrate that patients had improved understanding of their therapy with the models. However, the models alone did not affect risk evaluation or comfort with surgery. A 3D printed brain model may help improve patient understanding of DBS surgery.


Asunto(s)
Estimulación Encefálica Profunda , Alfabetización en Salud , Ansiedad , Encéfalo , Estimulación Encefálica Profunda/métodos , Humanos , Derivación y Consulta
18.
Front Surg ; 9: 863921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211256

RESUMEN

Advanced Parkinson's disease (PD) is characterized by increasingly debilitating impaired movements that include motor fluctuations and dyskinesias. At this stage of the disease, pharmacological management can result in unsatisfactory clinical benefits and increase the occurrence of adverse effects, leading to the consideration of advanced therapies. The scope of this review is to provide an overview of currently available therapies for advanced PD, specifically levodopa-carbidopa intestinal gel, continuous subcutaneous apomorphine infusion, radiofrequency ablation, stereotactic radiosurgery, MRI-guided focused ultrasound, and deep brain stimulation. Therapies in clinical trials are also discussed, including novel formulations of subcutaneous carbidopa/levodopa, gene-implantation therapies, and cell-based therapies. This review focuses on the clinical outcomes and adverse effects of the various therapies and also considers patient-specific characteristics that may influence treatment choice. This review can equip providers with updated information on advanced therapies in PD to better counsel patients on the available options.

19.
PLoS One ; 17(10): e0275490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36264986

RESUMEN

Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders routinely relies on intraoperative motor testing for target determination. However, in current practice, motor testing relies on subjective interpretation and correlation of motor and neural information. Recent advances in computer vision could improve assessment accuracy. We describe our application of deep learning-based computer vision to conduct markerless tracking for measuring motor behaviors of patients undergoing DBS surgery for the treatment of Parkinson's disease. Video recordings were acquired during intraoperative kinematic testing (N = 5 patients), as part of standard of care for accurate implantation of the DBS electrode. Kinematic data were extracted from videos post-hoc using the Python-based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy) approaches were used to extract kinematic episodes from threshold derived kinematic fluctuations. Active motor epochs were compressed by modeling upper limb deflections with a parabolic fit. A semi-supervised classification model, support vector machine (SVM), trained on the parameters defined by the parabolic fit reliably predicted movement type. Across all cases, tracking was well calibrated (i.e., reprojection pixel errors 0.016-0.041; accuracies >95%). SVM predicted classification demonstrated high accuracy (85.70%) including for two common upper limb movements, arm chain pulls (92.30%) and hand clenches (76.20%), with accuracy validated using a leave-one-out process for each patient. These results demonstrate successful capture and categorization of motor behaviors critical for assessing the optimal brain target for DBS surgery. Conventional motor testing procedures have proven informative and contributory to targeting but have largely remained subjective and inaccessible to non-Western and rural DBS centers with limited resources. This approach could automate the process and improve accuracy for neuro-motor mapping, to improve surgical targeting, optimize DBS therapy, provide accessible avenues for neuro-motor mapping and DBS implantation, and advance our understanding of the function of different brain areas.


Asunto(s)
Estimulación Encefálica Profunda , Aprendizaje Profundo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Fenómenos Biomecánicos , Prueba de Estudio Conceptual , Extremidad Superior
20.
Neurol Clin Pract ; 12(6): 429-437, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540151

RESUMEN

Implementation of palliative care (PC) in neurology settings may improve symptom control and quality of life and reduce acute care admissions. The benefits of team-based PC for patients with Parkinson disease have been established through rigorous evidence standards including randomized controlled trials. However, evidence on implementation costs and return on investment (ROI) is unknown and may guide other providers and systems considering this model of care. We applied time-driven activity-based costing with reimbursable visits calculated using Medicare reimbursement rates in Colorado and current procedural technology codes to 2 outpatient clinics at the University of Colorado Hospital: neurology PC and movement disorders. Per-patient ROI was calculated as the ratio of the incremental difference in financial revenues divided by the incremental difference in investment to expand PC services. The cost per new patient was $154 and $98 for neuropalliative and movement disorders clinics, respectively. Established patient visit costs were $82 and $41 for the neuropalliative care and movement disorders clinics, respectively. The neurology PC clinic had per-patient revenue for new and established visits of $297 and $147, respectively, compared with $203 and $141 for new and established visits, respectively, at the comparator clinic. Based on our assumptions, for every $1 invested in expanding PC services, a projected $1.68 will be recouped by the hospital system for new patient visits, and $0.13 will be recouped for established patient visits. These amounts are context dependent, and a calculator was created to allow other systems to estimate costs and ROI. Our results suggest that in an academic medical setting, both neurology PC and movement disorders clinics provided increased revenue to the health system. Opportunities to improve ROI include efficient allocation of personnel to new and established visits, expanding telemedicine, and other cost offsets for complex patients not estimated in this analysis. ROI may also be greater in health systems that benefit from cost savings such as accountable care organizations. Our approach may be applied to other novel care models. Future research efforts will focus on estimating the continued sustainability of this innovative outpatient care model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA