Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7961): 629-636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138085

RESUMEN

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Asunto(s)
Oxígeno , Fotosíntesis , Complejo de Proteína del Fotosistema II , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Agua/química , Agua/metabolismo , Manganeso/química , Manganeso/metabolismo , Calcio/química , Calcio/metabolismo , Peróxidos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(12): e2119616119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290124

RESUMEN

Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with ∼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.

4.
Infection ; 52(3): 995-1008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150152

RESUMEN

PURPOSE: Although diagnostic stewardship issues in clinical microbiology harbor an optimization potential for anti-infective consumption, they are only marginally addressed in antimicrobial stewardship (AMS) programs. As part of an AMS point prevalence (PPS) survey we therefore aimed to gain a more dynamic view on the microbiological awareness within therapeutic regimens. By examining whether initial microbiological sampling was performed and in which way microbiological results were incorporated into further treatment considerations we sought to find out to what extent these points determine the appropriateness of treatment regimens. METHODS: PPS was performed at the University Hospital Salzburg (1524 beds) in May 2021. Relevant data was determined from the patient charts and the appropriateness of anti-infective use was assessed using predefined quality indicators. Six months after the PPS, a questionnaire was administered to clinicians to obtain information on the use of microbiological findings and their relevance in the clinic. RESULTS: Lack of microbiological awareness in the clinical setting proved to be the key reason for an overall inadequate use of anti-infectives (35.4% of cases rated as inadequate), ahead of the aspects of dose (24.1%), empirical therapy (20.3%) and treatment duration (20.2%). This was particularly the case for broad-acting agents and was most evident in urinary tract infections, skin and soft tissue infections, and pneumonia. The results of the questionnaire indicate a discrepancy between the physicians surveyed and the routine clinical setting. CONCLUSION: A high potential in improving the use of anti-infectives in hospitals seems to lie in a strong emphasis on microbiological diagnostic stewardship measures.


Asunto(s)
Antiinfecciosos , Programas de Optimización del Uso de los Antimicrobianos , Hospitales Universitarios , Humanos , Austria/epidemiología , Encuestas y Cuestionarios , Antiinfecciosos/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Prevalencia , Prescripción Inadecuada/estadística & datos numéricos , Anciano de 80 o más Años
5.
Nature ; 563(7731): 421-425, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405241

RESUMEN

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Asunto(s)
Oxígeno/metabolismo , Fotosíntesis , Agua/química , Agua/metabolismo , Calcio/metabolismo , Cristalografía por Rayos X , Cianobacterias/química , Rayos Láser , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona/metabolismo
6.
J Am Chem Soc ; 145(27): 14621-14635, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37369071

RESUMEN

Structural dynamics of water and its hydrogen-bonding networks play an important role in enzyme function via the transport of protons, ions, and substrates. To gain insights into these mechanisms in the water oxidation reaction in Photosystem II (PS II), we have performed crystalline molecular dynamics (MD) simulations of the dark-stable S1 state. Our MD model consists of a full unit cell with 8 PS II monomers in explicit solvent (861 894 atoms), enabling us to compute the simulated crystalline electron density and to compare it directly with the experimental density from serial femtosecond X-ray crystallography under physiological temperature collected at X-ray free electron lasers (XFELs). The MD density reproduced the experimental density and water positions with high fidelity. The detailed dynamics in the simulations provided insights into the mobility of water molecules in the channels beyond what can be interpreted from experimental B-factors and electron densities alone. In particular, the simulations revealed fast, coordinated exchange of waters at sites where the density is strong, and water transport across the bottleneck region of the channels where the density is weak. By computing MD hydrogen and oxygen maps separately, we developed a novel Map-based Acceptor-Donor Identification (MADI) technique that yields information which helps to infer hydrogen-bond directionality and strength. The MADI analysis revealed a series of hydrogen-bond wires emanating from the Mn cluster through the Cl1 and O4 channels; such wires might provide pathways for proton transfer during the reaction cycle of PS II. Our simulations provide an atomistic picture of the dynamics of water and hydrogen-bonding networks in PS II, with implications for the specific role of each channel in the water oxidation reaction.

7.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37939223

RESUMEN

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Asunto(s)
Ácido Peracético , Peróxidos , Ligandos , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro , Hemo/química , Tirosina , Carbono
8.
Photosynth Res ; 156(3): 279-307, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36826741

RESUMEN

Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.


Asunto(s)
Complejo de Proteína del Fotosistema II , Energía Solar , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis , Oxidación-Reducción , Agua/metabolismo , Oxígeno/metabolismo
9.
Photosynth Res ; 158(2): 91-107, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37266800

RESUMEN

One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).


Asunto(s)
Complejo de Proteína del Fotosistema II , Protones , Complejo de Proteína del Fotosistema II/metabolismo , Agua/metabolismo , Microscopía por Crioelectrón , Oxidación-Reducción
11.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38013689

RESUMEN

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

12.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34656997

RESUMEN

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Asunto(s)
Proteínas Mitocondriales , Ubiquinona , Línea Celular , Niño , Humanos , Recién Nacido , Proteínas Mitocondriales/genética , Neuroimagen , Fenotipo , Ubiquinona/genética , Ubiquinona/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434915

RESUMEN

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hidrógeno/metabolismo , Magnesio/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotones , Complejo de Proteína del Fotosistema II/química , Quinonas/metabolismo , Agua/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(1): 300-307, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31852825

RESUMEN

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


Asunto(s)
Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/efectos de la radiación , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Cristalografía , Cristalografía por Rayos X , Cianobacterias/química , GMP Cíclico , Luz , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Células Fotorreceptoras/metabolismo , Ficobilinas/química , Ficocianina/química , Conformación Proteica , Dominios Proteicos , Thermosynechococcus , Transactivadores/química
15.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047524

RESUMEN

Therapeutic plasma exchange (TPE) is used for drug-resistant neuroimmunological disorders, but its mechanism of action remains poorly understood. We therefore prospectively explored changes in soluble, humoral, and cellular immune components associated with TPE. We included ten patients with neurological autoimmune disorders that underwent TPE and assessed a panel of clinically relevant pathogen-specific antibodies, total serum immunoglobulin (Ig) levels, interleukin-6 (IL-6, pg/mL), C-reactive protein (CRP, mg/dL), procalcitonin (PCT, µg/L) and major lymphocyte subpopulations (cells/µL). Blood was collected prior to TPE (pre-TPE, baseline), immediately after TPE (post-TPE), as well as five weeks (follow-up1) and 130 days (follow-up2) following TPE. Pathogen-specific antibody levels were reduced by -86% (p < 0.05) post-TPE and recovered to 55% (follow-up1) and 101% (follow-up2). Ig subclasses were reduced by -70-89% (p < 0.0001) post-TPE with subsequent complete (IgM/IgA) and incomplete (IgG) recovery throughout the follow-ups. Mean IL-6 and CRP concentrations increased by a factor of 3-4 at post-TPE (p > 0.05) while PCT remained unaffected. We found no alterations in B- and T-cell populations. No adverse events related to TPE occurred. TPE induced a profound but transient reduction in circulating antibodies, while the investigated soluble immune components were not washed out. Future studies should explore the effects of TPE on particular cytokines and assess inflammatory lymphocyte lineages to illuminate the mode of action of TPE beyond autoantibody removal.


Asunto(s)
Enfermedades del Sistema Nervioso , Intercambio Plasmático , Humanos , Proyectos Piloto , Interleucina-6 , Plasmaféresis , Enfermedades del Sistema Nervioso/terapia , Estudios Retrospectivos
16.
J Neurooncol ; 160(3): 567-576, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36319795

RESUMEN

PURPOSE: Despite excellent long-term overall survival rates, pediatric low-grade gliomas (pLGG) show high variety of clinical behavior regarding progress or senescence post incomplete resection (IR). This study retrospectively analyzes tumor growth velocity (TGV) of pLGG before surgery and after IR to investigate the impact of surgical extent, tumor location and molecular BRAF status on postoperative residual tumor growth behavior. METHODS: Of a total of 172 patients with pLGG receiving surgical treatment, 107 underwent IR (66%). Fifty-three vs 94 patients could be included in the pre- and post-operative cohort, respectively, and were observed over a mean follow-up time of 40.2 vs 60.1 months. Sequential three-dimensional MRI-based tumor volumetry of a total of 407 MRI scans was performed to calculate pre- and postoperative TGV. RESULTS: Mean preoperative TGV of 0.264 cm3/month showed significant deceleration of tumor growth to 0.085 cm3/month, 0.024 cm3/month and -0.016 cm3/month after 1st, 2nd, and 3rd IR, respectively (p < 0.001). Results remained significant after excluding patients undergoing (neo)adjuvant treatment. Resection extent showed correlation with postoperative reduction of TGV (R = 0.97, p < 0.001). ROC analysis identified a residual cut-off tumor volume > 2.03 cm3 associated with a higher risk of progress post IR (sensitivity 78,6%, specificity 76.3%, AUC 0.88). Postoperative TGV of BRAF V600E-mutant LGG was significantly higher than of BRAF wild-type LGG (0.123 cm3/month vs. 0.016 cm3/month, p = 0.047). CONCLUSION: This data suggests that extensive surgical resection may impact pediatric LGG growth kinetics post incomplete resection by inducing a significant deceleration of tumor growth. BRAF-V600E mutation may be a risk factor for higher postoperative TGV.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/cirugía , Estudios de Cohortes , Neoplasia Residual/genética , Mutación
17.
J Synchrotron Radiat ; 28(Pt 5): 1386-1392, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475287

RESUMEN

Automated, pulsed liquid-phase sample delivery has the potential to greatly improve the efficiency of both sample and photon use at pulsed X-ray facilities. In this work, an automated drop on demand (DOD) system that accelerates sample exchange for serial femtosecond crystallography (SFX) is demonstrated. Four different protein crystal slurries were tested, and this technique is further improved here with an automatic sample-cycling system whose effectiveness was verified by the indexing results. Here, high-throughput SFX screening is shown to be possible at free-electron laser facilities with very low risk of cross contamination and minimal downtime. The development of this technique will significantly reduce sample consumption and enable structure determination of proteins that are difficult to crystallize in large quantities. This work also lays the foundation for automating sample delivery.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/química , Manejo de Especímenes/métodos , Alcohol Deshidrogenasa/química , Cristalización , Endo-1,4-beta Xilanasas/química , Endopeptidasa K/química , Proteínas de Plantas/química , Conformación Proteica
18.
Ann Neurol ; 88(2): 251-263, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32337771

RESUMEN

OBJECTIVE: To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS: Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS: Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION: This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.


Asunto(s)
Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Variación Genética/genética , Imagen por Resonancia Magnética/métodos , Ubiquinona/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Estructura Secundaria de Proteína , Ubiquinona/química , Adulto Joven
19.
J Am Chem Soc ; 142(23): 10459-10467, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32406683

RESUMEN

Rapid and directed electron transfer (ET) is essential for biological processes. While the rates of ET over 1-2 nm in proteins can largely be described by simplified nonadiabatic theory, it is not known how these processes scale to microscopic distances. We generated crystalline lattices of Small Tetraheme Cytochromes (STC) forming well-defined, three-dimensional networks of closely spaced redox centers that appear to be nearly ideal for multistep ET. Electrons were injected into specific locations in the STC crystals by direct photoreduction, and their redistribution was monitored by imaging. The results demonstrate ET over mesoscopic to microscopic (∼100 µm) distances through sequential hopping in a biologically based heme network. We estimate that a hypothetical "nanowire" composed of crystalline STC with a cross-section of about 100 cytochromes could support the anaerobic respiration of a Shewanella cell. The crystalline lattice insulates mobile electrons from oxidation by O2, as compared to those in cytochromes in solution, potentially allowing for efficient delivery of current without production of reactive oxygen species. The platform allows direct tests of whether the assumptions based on short-range ET hold for sequential ET over mesoscopic distances. We estimate that the interprotein ET across 6 Å between hemes in adjacent proteins was about 105 s-1, about 100-fold slower than expectations based on simplified theory. More detailed analyses implied that additional factors, possibly contributed by the crystal lattice, may strongly impact mesoscale ET mainly by increasing the reorganizational energy of interprotein ET, which suggests design strategies for engineering improved nanowires suitable for future bioelectronic materials.


Asunto(s)
Citocromos/metabolismo , Cristalografía por Rayos X , Citocromos/química , Transporte de Electrón , Modelos Moleculares , Shewanella/química , Shewanella/citología
20.
J Am Chem Soc ; 142(33): 14249-14266, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32683863

RESUMEN

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.


Asunto(s)
Oxigenasas/química , Temperatura , Methylosinus trichosporium/enzimología , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/metabolismo , Solubilidad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA