Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 36(2): e22155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35044708

RESUMEN

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor (LIF) is robustly upregulated and can stimulate Mmp14 expression in macrophages. Functional experiments confirmed that modulation of this muscle cell-macrophage axis facilitated Type I collagen turnover. Finally, changes in LIF expression were significantly correlated with MMP14 expression in humans following 14 weeks of PRT. Our experiments reveal a mechanism whereby muscle fibers influence macrophage behavior to promote ECM remodeling in response to mechanical loading.


Asunto(s)
Matriz Extracelular/metabolismo , Leucocitos Mononucleares/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Colágeno Tipo I/metabolismo , Femenino , Humanos , Factor Inhibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza/métodos
2.
J Physiol ; 600(4): 847-868, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33724479

RESUMEN

KEY POINTS: Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of ß-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to ß-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding ß-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Humanos , Lipólisis , Grasa Subcutánea/metabolismo , Termogénesis/fisiología
3.
Physiol Genomics ; 53(5): 206-221, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33870722

RESUMEN

The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.


Asunto(s)
Redes Reguladoras de Genes , Entrenamiento de Fuerza , Crecimiento del Músculo Esquelético/genética , Absorciometría de Fotón , Anciano , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología
4.
FASEB J ; 34(5): 7018-7035, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246795

RESUMEN

Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated ß-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.


Asunto(s)
Envejecimiento/metabolismo , Histonas/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Biomarcadores/metabolismo , Diferenciación Celular , Senescencia Celular , Daño del ADN , Reparación del ADN/genética , Femenino , Humanos , Inmunohistoquímica , Masculino , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Obesidad/patología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Adulto Joven
5.
Kidney Int ; 97(1): 143-155, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31739987

RESUMEN

In the setting of type-2 diabetes, there are declines of structural stability and functionality of blood capillaries and red blood cells (RBCs), increasing the risk for microcirculatory disturbances. Correcting hyperglycemia is not entirely effective at reestablishing normal cellular metabolism and function. Therefore, identification of pathological changes occurring before the development of overt hyperglycemia may lead to novel therapeutic targets for reducing the risk of microvascular dysfunction. Here we determine whether RBC-capillary interactions are altered by prediabetic hypersecretion of amylin, an amyloid forming hormone co-synthesized with insulin, and is reversed by endothelial cell-secreted epoxyeicosatrienoic acids. In patients, we found amylin deposition in RBCs in association with type-2 diabetes, heart failure, cancer and stroke. Amylin-coated RBCs have altered shape and reduced functional (non-glycated) hemoglobin. Amylin-coated RBCs administered intravenously in control rats upregulated erythropoietin and renal arginase expression and activity. We also found that diabetic rats expressing amyloid-forming human amylin in the pancreas (the HIP rat model) have increased tissue levels of hypoxia-inducible transcription factors, compared to diabetic rats that express non-amyloid forming rat amylin (the UCD rat model). Upregulation of erythropoietin correlated with lower hematocrit in the HIP model indicating pathologic erythropoiesis. In the HIP model, pharmacological upregulation of endogenous epoxyeicosatrienoic acids protected the renal microvasculature against amylin deposition and also reduced renal accumulation of HIFs. Thus, prediabetes induces dysregulation of amylin homeostasis and promotes amylin deposition in RBCs and the microvasculature altering RBC-capillary interaction leading to activation of hypoxia signaling pathways and pathologic erythropoiesis. Hence, dysregulation of amylin homeostasis could be a therapeutic target for ameliorating diabetic vascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/patología , Eritrocitos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Microvasos/patología , Adulto , Amiloide/metabolismo , Animales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/sangre , Modelos Animales de Enfermedad , Eicosanoides/metabolismo , Eritropoyesis , Eritropoyetina/metabolismo , Femenino , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Microcirculación , Persona de Mediana Edad , Ratas , Estudios Retrospectivos
6.
Stem Cells ; 34(7): 1883-95, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26991836

RESUMEN

IκB kinase ß (IKKß), a central coordinator of inflammation through activation of nuclear factor-κB, has been identified as a potential therapeutic target for the treatment of obesity-associated metabolic dysfunctions. In this study, we evaluated an antisense oligonucleotide (ASO) inhibitor of IKKß and found that IKKß ASO ameliorated diet-induced metabolic dysfunctions in mice. Interestingly, IKKß ASO also inhibited adipocyte differentiation and reduced adiposity in high-fat (HF)-fed mice, indicating an important role of IKKß signaling in the regulation of adipocyte differentiation. Indeed, CRISPR/Cas9-mediated genomic deletion of IKKß in 3T3-L1 preadipocytes blocked these cells differentiating into adipocytes. To further elucidate the role of adipose progenitor IKKß signaling in diet-induced obesity, we generated mice that selectively lack IKKß in the white adipose lineage and confirmed the essential role of IKKß in mediating adipocyte differentiation in vivo. Deficiency of IKKß decreased HF-elicited adipogenesis in addition to reducing inflammation and protected mice from diet-induced obesity and insulin resistance. Further, pharmacological inhibition of IKKß also blocked human adipose stem cell differentiation. Our findings establish IKKß as a pivotal regulator of adipogenesis and suggest that overnutrition-mediated IKKß activation serves as an initial signal that triggers adipose progenitor cell differentiation in response to HF feeding. Inhibition of IKKß with antisense therapy may represent as a novel therapeutic approach to combat obesity and metabolic dysfunctions. Stem Cells 2016;34:1883-1895.


Asunto(s)
Adipocitos/patología , Linaje de la Célula , Quinasa I-kappa B/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Terapia Molecular Dirigida , Obesidad/tratamiento farmacológico , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Linaje de la Célula/efectos de los fármacos , Dieta , Hígado Graso/patología , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Humanos , Quinasa I-kappa B/deficiencia , Insulina/farmacología , Masculino , Síndrome Metabólico/patología , Ratones Endogámicos C57BL , Obesidad/patología , Oligonucleótidos Antisentido/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
7.
Curr Diab Rep ; 17(10): 87, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28812211

RESUMEN

PURPOSE OF REVIEW: Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. RECENT FINDINGS: Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.


Asunto(s)
Sistema Inmunológico/patología , Obesidad/inmunología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Etnicidad , Humanos , Grupos Raciales , Caracteres Sexuales
8.
Proc Natl Acad Sci U S A ; 111(1): 155-60, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367090

RESUMEN

Insulin activation of phosphoinositide 3-kinase (PI3K) signaling regulates glucose homeostasis through the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3). The dual-specificity phosphatase and tensin homolog deleted on chromosome 10 (PTEN) blocks PI3K signaling by dephosphorylating PIP3, and is inhibited through its interaction with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2 (P-REX2). The mechanism of inhibition and its physiological significance are not known. Here, we report that P-REX2 interacts with PTEN via two interfaces. The pleckstrin homology (PH) domain of P-REX2 inhibits PTEN by interacting with the catalytic region of PTEN, and the inositol polyphosphate 4-phosphatase domain of P-REX2 provides high-affinity binding to the postsynaptic density-95/Discs large/zona occludens-1-binding domain of PTEN. P-REX2 inhibition of PTEN requires C-terminal phosphorylation of PTEN to release the P-REX2 PH domain from its neighboring diffuse B-cell lymphoma homology domain. Consistent with its function as a PTEN inhibitor, deletion of Prex2 in fibroblasts and mice results in increased Pten activity and decreased insulin signaling in liver and adipose tissue. Prex2 deletion also leads to reduced glucose uptake and insulin resistance. In human adipose tissue, P-REX2 protein expression is decreased and PTEN activity is increased in insulin-resistant human subjects. Taken together, these results indicate a functional role for P-REX2 PH-domain-mediated inhibition of PTEN in regulating insulin sensitivity and glucose homeostasis and suggest that loss of P-REX2 expression may cause insulin resistance.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Resistencia a la Insulina , Fosfohidrolasa PTEN/antagonistas & inhibidores , Animales , Sitios de Unión , Proteínas Sanguíneas/química , Dominio Catalítico , Proliferación Celular , Fibroblastos/metabolismo , Glucosa/metabolismo , Células HEK293 , Homeostasis , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/química , Fosforilación , Unión Proteica
9.
Physiol Genomics ; 48(2): 145-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26672043

RESUMEN

Adipose tissue has profound effects on whole-body insulin sensitivity. However, the underlying biological processes are quite complex and likely multifactorial. For instance, the adipose transcriptome is posttranscriptionally modulated by microRNAs, but the relationship between microRNAs and insulin sensitivity in humans remains to be determined. To this end, we utilized an integrative mRNA-microRNA microarray approach to identify putative molecular interactions that regulate the transcriptome in subcutaneous adipose tissue of insulin-sensitive (IS) and insulin-resistant (IR) individuals. Using the NanoString nCounter Human v1 microRNA Expression Assay, we show that 17 microRNAs are differentially expressed in IR vs. IS. Of these, 16 microRNAs (94%) are downregulated in IR vs. IS, including miR-26b, miR-30b, and miR-145. Using Agilent Human Whole Genome arrays, we identified genes that were predicted targets of miR-26b, miR-30b, and miR-145 and were upregulated in IR subjects. This analysis produced ADAM22, MYO5A, LOX, and GM2A as predicted gene targets of these microRNAs. We then validated that miR-145 and miR-30b regulate these mRNAs in differentiated human adipose stem cells. We suggest that use of bioinformatic integration of mRNA and microRNA arrays yields verifiable mRNA-microRNA pairs that are associated with insulin resistance and can be validated in vitro.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Proteínas ADAM/metabolismo , Análisis por Conglomerados , Proteína Activadora de G (M2)/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Humano , Humanos , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Depuradores de Clase E/metabolismo
10.
J Biol Chem ; 290(18): 11547-56, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25784555

RESUMEN

Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.


Asunto(s)
Adipocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Obesidad/metabolismo , Obesidad/patología , Adipocitos/efectos de los fármacos , Animales , Femenino , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Transgénicos , Obesidad/enzimología , Obesidad/genética , Fenotipo , Tiazolidinedionas/farmacología
11.
Am J Hum Genet ; 91(3): 466-77, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22958899

RESUMEN

To date, 68 loci have been associated with type 2 diabetes (T2D) or glucose homeostasis traits. We report here the results of experiments aimed at functionally characterizing the SNPs replicated for T2D and glucose traits. We sought to determine whether these loci were associated with transcript levels in adipose, muscle, liver, lymphocytes, and pancreatic ß-cells. We found an excess of trans, rather than cis, associations among these SNPs in comparison to what was expected in adipose and muscle. Among transcripts differentially expressed (FDR < 0.05) between muscle or adipose cells of insulin-sensitive individuals and those of insulin-resistant individuals (matched on BMI), trans-regulated transcripts, in contrast to the cis-regulated ones, were enriched. The paucity of cis associations with transcripts was confirmed in a study of liver transcriptome and was further supported by an analysis of the most detailed transcriptome map of pancreatic ß-cells. Relative to location- and allele-frequency-matched random SNPs, both the 68 loci and top T2D-associated SNPs from two large-scale genome-wide studies were enriched for trans eQTLs in adipose and muscle but not in lymphocytes. Our study suggests that T2D SNPs have broad-reaching and tissue-specific effects that often extend beyond local transcripts and raises the question of whether patterns of cis or trans transcript regulation are a key feature of the architecture of complex traits.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Transcriptoma , Tejido Adiposo/metabolismo , Adulto , Femenino , Perfilación de la Expresión Génica/métodos , Glucosa/metabolismo , Humanos , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Músculos/metabolismo , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Adulto Joven
12.
J Physiol ; 592(12): 2625-35, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24687582

RESUMEN

In the present study, we sought to determine the effect of a traditional, 12 week aerobic training protocol on skeletal muscle fibre type distribution and satellite cell content in sedentary subjects. Muscle biopsies were obtained from the vastus lateralis [n = 23 subjects (six male and 17 female); body mass index 30.7 ± 1.2 kg m(-2)] before and after 12 weeks of aerobic training performed on a cycle ergometer. Immunohistochemical analyses were used to quantify myosin heavy chain (MyHC) isoform expression, cross-sectional area and satellite cell and myonuclear content. Following training, a decrease in MyHC hybrid type IIa/IIx fibre frequency occurred, with a concomitant increase in pure MyHC type IIa fibres. Pretraining fibre type correlated with body mass index, and the change in fibre type following training was associated with improvements in maximal oxygen consumption. Twelve weeks of aerobic training also induced increases in mean cross-sectional area in both MyHC type I and type IIa fibres. Satellite cell content was also increased following training, specifically in MyHC type I fibres, with no change in the number of satellite cells associated with MyHC type II fibres. With the increased satellite cell content following training, an increase in myonuclear number per fibre also occurred in MyHC type I fibres. Hypertrophy of MyHC type II fibres occurred without detectable myonuclear addition, suggesting that the mechanisms underlying growth in fast and slow fibres differ. These data provide intriguing evidence for a fibre type-specific role of satellite cells in muscle adaptation following aerobic training.


Asunto(s)
Ejercicio Físico/fisiología , Fibras Musculares Esqueléticas/fisiología , Miosina Tipo II/fisiología , Miosina Tipo I/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Satélite del Músculo Esquelético/fisiología
13.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585802

RESUMEN

Metabolism research is increasingly recognizing the contributions of organelle crosstalk to metabolic regulation. Mitochondria-associated membranes (MAMs), which are structures connecting the mitochondria and endoplasmic reticulum (ER), are critical in a myriad of cellular functions linked to cellular metabolism. MAMs control calcium signaling, mitochondrial transport, redox balance, protein folding/degradation, and in some studies, metabolic health. The possibility that MAMs drive changes in cellular function in individuals with Type 2 Diabetes (T2D) is controversial. Although disruptions in MAMs that change the distance between the mitochondria and ER, MAM protein composition, or disrupt downstream signaling, can perpetuate inflammation, one key trait of T2D. However, the full scope of this structure's role in immune cell health and thus T2D-associated inflammation remains unknown. We show that human immune cell MAM proteins and their associated functions are not altered by T2D and thus unlikely to contribute to metaflammation.

14.
Nutrients ; 16(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794641

RESUMEN

Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis. Shifts in the nutrient milieu could influence inflammation through changes in T-cell metabolism. We aimed to determine whether changes in glucose utilization alter cytokine profiles in T2D. Peripheral blood mononuclear cells (PBMCs), CD4+ T-cells, and CD4+CD25- T-effector (Teff) cells were isolated from age-matched humans classified by glycemic control and BMI. Cytokines secreted by CD3/CD28-stimulated PBMCs and Teff were measured in supernatants with multiplex cytokine assays and a FLEXMAP-3D. Metabolic activity of stimulated CD4+ T-cells was measured by a Seahorse XFe96 analyzer. In this study, we demonstrated that T-cell stimulated PBMCs from non-fasted people with T2D produced higher amounts of cytokines compared to fasting. Although dysglycemia characterizes T2D, cytokine production by PBMCs or CD4+ T-cells in T2D was unaltered by hyperglycemic media. Moreover, pharmacological suppression of mitochondrial glucose oxidation did not change T-cell metabolism in T2D, yet enhanced cytokine competency. In conclusion, fasting and glucose metabolism differentially impact peripheral inflammation in human T2D, suggesting that glucose, along with fatty acid metabolites per our previous work, partner to regulate metaflammation. These data expose a major disconnect in the use of glycemic control drugs to target T2D-associated metaflammation.


Asunto(s)
Linfocitos T CD4-Positivos , Citocinas , Diabetes Mellitus Tipo 2 , Ayuno , Inflamación , Leucocitos Mononucleares , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Glucemia/metabolismo , Glucosa/metabolismo , Adulto , Anciano
15.
Physiol Rep ; 12(3): e15924, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38296465

RESUMEN

Circadian rhythms differ between young adult males and females. For example, males tend to be later chronotypes, preferring later timing of sleep and activity, than females. Likewise, there are sex differences in body composition and cardiorespiratory fitness. Few studies have investigated the association between circadian rhythms, cardiorespiratory fitness, and body composition. We sought to determine whether chronotype and circadian phase were associated with cardiorespiratory fitness, body composition, and anthropometric measures in sedentary males and females. Fifty-nine adults participated in the study. Circadian phase and chronotype were measured using dim light melatonin onset (DLMO) and the Morningness-Eveningness Questionnaire (MEQ) score. We used peak oxygen uptake (VO2peak ) results from a maximal graded exercise test to assess cardiorespiratory fitness. Body composition, BMI, and circumferences were collected as markers of adiposity. We observed a sex difference in the association between DLMO and VO2peak . For males, a later DLMO was associated with a lower VO2peak . VO2peak did not vary based on DLMO in females. Later circadian phase was also associated with increased body fat percentage, fat mass index, and abdominal circumference in males, but not females. Collectively, these results suggest that males who are later chronotypes may be at risk of obesity and low cardiorespiratory fitness.


Asunto(s)
Capacidad Cardiovascular , Melatonina , Adulto Joven , Humanos , Masculino , Femenino , Cronotipo , Sueño , Ritmo Circadiano
16.
JCEM Case Rep ; 1(6): luad132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954833

RESUMEN

Although most patients are transparent regarding steroid use, rare patients use steroids surreptitiously, which can occasionally result in factitious Cushing syndrome or extensive diagnostic testing. We present 2 cases, 1 with factitious Cushing syndrome and the second with surreptitious steroid use resulting in abnormal laboratory results and a complicated clinical picture. Synthetic glucocorticoid urine testing was positive for triamcinolone acetonide and fluticasone propionate in case 1 and triamcinolone acetonide only in case 2, which clarified the diagnosis and minimized additional and potentially invasive testing.

17.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671031

RESUMEN

Bilirubin levels in obese humans and rodents have been shown to be lower than in their lean counterparts. Some studies have proposed that the glucuronyl UGT1A1 enzyme that clears bilirubin from the blood increases in the liver with obesity. UGT1A1 clearance of bilirubin allows more conjugated bilirubin to enter the intestine, where it is catabolized into urobilin, which can be then absorbed via the hepatic portal vein. We hypothesized that when bilirubin levels are decreased, the urobilin increases in the plasma of obese humans, as compared to lean humans. To test this, we measured plasma levels of bilirubin and urobilin, body mass index (BMI), adiposity, blood glucose and insulin, and HOMA IR in a small cohort of obese and lean men and women. We found that bilirubin levels negatively correlated with BMI and adiposity in obese men and women, as compared to their lean counterparts. Contrarily, urobilin levels were positively associated with adiposity and BMI. Only obese women were found to be insulin resistant based on significantly higher HOMA IR, as compared to lean women. The urobilin levels were positively associated with HOMA IR in both groups, but women had a stronger linear correlation. These studies indicate that plasma urobilin levels are associated with obesity and its comorbidities, such as insulin resistance.

18.
J Clin Transl Sci ; 7(1): e57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008610

RESUMEN

Introduction: Optimizing the effectiveness of a team-based approach to unite multiple disciplines in advancing specific translational areas of research is foundational to improving clinical practice. The current study was undertaken to examine investigators' experiences of participation in transdisciplinary team science initiatives, with a focus on challenges and recommendations for improving effectiveness. Methods: Qualitative interviews were conducted with investigators from twelve multidisciplinary teams awarded pilot research funding by the University of Kentucky College of Medicine to better understand the barriers and facilitators to effective team science within an academic medical center. An experienced qualitative researcher facilitated one-on-one interviews, which lasted about one hour. Structured consensus coding and thematic analysis were conducted. Results: The sample was balanced by gender, career stage (five were assistant professor at the time of the award, seven were senior faculty), and training (six were PhDs; six were MD physicians). Key themes at the team-level centered on the tension between clinical commitments and research pursuits and the limitations for effective team functioning. Access to tangible support from home departments and key university centers was identified as a critical organizational facilitator of successful project completion. Organizational barriers centered on operationalizing protected time for physicians, gaps in effective mentoring, and limitations in operational support. Conclusions: Prioritizing tailored mentoring and career development support for early career faculty, and particularly physician faculty, emerged as a key recommendation for improving team science in academic medical centers. The findings contribute to establishing best practices and policies for team science in academic medical centers.

19.
J Appl Physiol (1985) ; 135(6): 1403-1414, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37705447

RESUMEN

Changes in skeletal muscle are an important aspect of overall health. The collection of human muscle to study cellular and molecular processes for research requires a needle biopsy procedure which, in itself, can induce changes in the tissue. To investigate the effect of repeat tissue sampling, we collected skeletal muscle biopsy samples from vastus lateralis separated by 7 days. Cellular infiltrate, central nucleation, enlarged extracellular matrix, and rounding of muscle fibers were used as indices to define muscle damage, and we found that 16/26 samples (61.5%) revealed at least two of these symptoms in the secondary biopsy. The presence of damage influenced outcome measures usually obtained in human biopsies. Damaged muscle showed an increase in the number of small fibers even though average fiber and fiber type-specific cross-sectional area (CSA) were not different. This included higher numbers of embryonic myosin heavy chain-positive fibers (P = 0.001) as well as elevated satellite cell number (P = 0.02) in the damaged areas and higher variability in satellite cell count in the total area (P = 0.04). Collagen content was higher in damaged (P = 0.0003) as well as nondamaged areas (P = 0.05) of the muscle sections of the damaged compared with the nondamaged group. Myofibrillar protein and ribonucleic acid (RNA) fractional synthesis rates were not significantly different between the damaged compared with the nondamaged group. Results indicate that common outcomes as well as outcome variability in human muscle tissue are affected by previous biopsies. Therefore, the extent of potential damage should be assessed when performing repeated biopsies.NEW & NOTEWORTHY Indices of damage can be found in repeated biopsy samples of nonintervened control legs. Variables, directly and not directly related to muscle damage or regeneration, were compromised in second biopsy. There is a need to determine potential damage within muscle tissue when repeated muscle sampling is part of the study design. Muscle biopsy sampling may be a source of increased heterogeneity in human muscle data.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Humanos , Biopsia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiología , Células Satélite del Músculo Esquelético/fisiología , Músculo Cuádriceps
20.
J Clin Transl Sci ; 7(1): e59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008617

RESUMEN

Introduction: Impactful, transdisciplinary scientific discoveries are created by teams of researchers spanning multiple disciplines, but collaboration across disciplines can be challenging. We examined how team dynamics and collaboration are related to successes and barriers faced by teams of researchers from multiple disciplines. Methods: A mixed-methods approach was used to examine 12 research teams granted multidisciplinary pilot awards. Team members were surveyed to assess their team dynamics and individual views about transdisciplinary research. Forty-seven researchers (59.5%) responded, including two to eight members from each funded team. Associations were examined between collaborative dynamics and scholarly product outcomes, including manuscripts, grant proposals, and awarded grants. One member from each team was selected for an in-depth interview to contextualize and extend information about collaborative processes, successes, and barriers to performing transdisciplinary research. Results: Quality of team interactions was positively associated with achievement of scholarly products (r = 0.64, p = 0.02). Satisfaction with team members (r = 0.38) and team collaboration scores (r = 0.43) also demonstrated positive associations with achievement of scholarly products, but these were not statistically significant. Qualitative results support these findings and add further insight into aspects of the collaborative process that were particularly important to foster success on multidisciplinary teams. Beyond scholarly metrics, additional successes from the multidisciplinary teams were identified through the qualitative portion of the study including career development and acceleration for early career researchers. Conclusions: Both the quantitative and qualitative study results indicate that effective collaboration is critical to multidisciplinary research team success. Development and/or promotion of team science-based trainings for researchers would promote these collaborative skills.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA