Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 623(7986): 313-318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696288

RESUMEN

Metal halide perovskite solar cells (PSCs) represent a promising low-cost thin-film photovoltaic technology, with unprecedented power conversion efficiencies obtained for both single-junction and tandem applications1-8. To push PSCs towards commercialization, it is critical, albeit challenging, to understand device reliability under real-world outdoor conditions where multiple stress factors (for example, light, heat and humidity) coexist, generating complicated degradation behaviours9-13. To quickly guide PSC development, it is necessary to identify accelerated indoor testing protocols that can correlate specific stressors with observed degradation modes in fielded devices. Here we use a state-of-the-art positive-intrinsic-negative (p-i-n) PSC stack (with power conversion efficiencies of up to approximately 25.5%) to show that indoor accelerated stability tests can predict our six-month outdoor ageing tests. Device degradation rates under illumination and at elevated temperatures are most instructive for understanding outdoor device reliability. We also find that the indium tin oxide/self-assembled monolayer-based hole transport layer/perovskite interface most strongly affects our device operation stability. Improving the ion-blocking properties of the self-assembled monolayer hole transport layer increases averaged device operational stability at 50 °C-85 °C by a factor of about 2.8, reaching over 1,000 h at 85 °C and to near 8,200 h at 50 °C, with a projected 20% degradation, which is among the best to date for high-efficiency p-i-n PSCs14-17.

2.
Nature ; 611(7935): 278-283, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049505

RESUMEN

Perovskite solar cells (PSCs) with an inverted structure (often referred to as the p-i-n architecture) are attractive for future commercialization owing to their easily scalable fabrication, reliable operation and compatibility with a wide range of perovskite-based tandem device architectures1,2. However, the power conversion efficiency (PCE) of p-i-n PSCs falls behind that of n-i-p (or normal) structure counterparts3-6. This large performance gap could undermine efforts to adopt p-i-n architectures, despite their other advantages. Given the remarkable advances in perovskite bulk materials optimization over the past decade, interface engineering has become the most important strategy to push PSC performance to its limit7,8. Here we report a reactive surface engineering approach based on a simple post-growth treatment of 3-(aminomethyl)pyridine (3-APy) on top of a perovskite thin film. First, the 3-APy molecule selectively reacts with surface formamidinium ions, reducing perovskite surface roughness and surface potential fluctuations associated with surface steps and terraces. Second, the reaction product on the perovskite surface decreases the formation energy of charged iodine vacancies, leading to effective n-type doping with a reduced work function in the surface region. With this reactive surface engineering, the resulting p-i-n PSCs obtained a PCE of over 25 per cent, along with retaining 87 per cent of the initial PCE after over 2,400 hours of 1-sun operation at about 55 degrees Celsius in air.

3.
J Am Chem Soc ; 145(21): 11846-11858, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37202123

RESUMEN

Metal halide perovskites are promising for optoelectronic device applications; however, their poor stability under solar illumination remains a primary concern. While the intrinsic photostability of isolated neat perovskite samples has been widely discussed, it is important to explore how charge transport layers─employed in most devices─impact photostability. Herein, we study the effect of organic hole transport layers (HTLs) on light-induced halide segregation and photoluminescence (PL) quenching at perovskite/organic HTL interfaces. By employing a series of organic HTLs, we demonstrate that the HTL's highest occupied molecular orbital energy dictates behavior; furthermore, we reveal the key role of halogen loss from the perovskite and subsequent permeation into organic HTLs, where it acts as a PL quencher at the interface and introduces additional mass transport pathways to facilitate halide phase separation. In doing so, we both reveal the microscopic mechanism of non-radiative recombination at perovskite/organic HTL interfaces and detail the chemical rationale for closely matching the perovskite/organic HTL energetics to maximize solar cell efficiency and stability.

4.
Nano Lett ; 17(11): 6863-6869, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28968126

RESUMEN

One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (VOC) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned VOC from 1.05 to 1.45 V in solar cells.

5.
Nano Lett ; 16(7): 4624-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27331618

RESUMEN

Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

6.
Phys Rev Lett ; 116(5): 057402, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26894732

RESUMEN

Exciton diffusion in organic materials provides the operational basis for functioning of such devices as organic solar cells and light-emitting diodes. Here we track the exciton diffusion process in organic semiconductors in real time with a novel technique based on femtosecond photoinduced absorption spectroscopy. Using vacuum-deposited C_{70} layers as a model system, we demonstrate an extremely high diffusion coefficient of D≈3.5×10^{-3} cm^{2}/s that originates from a surprisingly low energetic disorder of <5 meV. The experimental results are well described by the analytical model and supported by extensive Monte Carlo simulations. The proposed noninvasive time-of-flight technique is deemed as a powerful tool for further development of organic optoelectronic components, such as simple layered solar cells, light-emitting diodes, and electrically pumped lasers.

7.
Adv Mater ; 35(29): e2302206, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37052234

RESUMEN

Metal halide perovskites are an attractive class of semiconductors, but it has proven difficult to control their electronic doping by conventional strategies due to screening and compensation by mobile ions or ionic defects. Noble-metal interstitials represent an under-studied class of extrinsic defects that plausibly influence many perovskite-based devices. In this work, doping of metal halide perovskites is studied by electrochemically formed Au+ interstitial ions, combining experimental data on devices with a computational analysis of Au+ interstitial defects based on density functional theory (DFT). Analysis suggests that Au+ cations can be easily formed and migrate through the perovskite bulk via the same sites as iodine interstitials (Ii + ). However, whereas Ii + compensates n-type doping by electron capture, the noble-metal interstitials act as quasi-stable n-dopants. Experimentally, voltage-dependent, dynamic doping by current density-time (J-t), electrochemical impedance, and photoluminescence measurements are characterized. These results provide deeper insight into the potential beneficial and detrimental impacts of metal electrode reactions on long-term performance of perovskite photovoltaic and light-emitting diodes, as well as offer an alternative doping explanation for the valence switching mechanism of halide-perovskite-based neuromorphic and memristive devices.

8.
J Phys Chem Lett ; 10(4): 890-896, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30739454

RESUMEN

Understanding the stability of metal halide perovskite (MHP) surfaces is of considerable interest for the development of devices based on these materials. We present here a vacuum-based study of the surface potential and response to illumination of two different types of perovskite films, methylammonium lead bromide (MAPbBr3) and the 2D Ruddlesden-Popper phase butylammonium lead iodide (BA2PbI4, n = 1), using Kelvin probe-based contact potential difference and surface photovoltage measurements. We show that supraband gap light irradiation can induce the loss of halide species, which adsorb on the Kelvin probe tip, inducing quasi-irreversible changes of the MHP surface and tip work functions. If undetected, this can lead to misinterpretations of the MHP surface potential. Our results illustrate the effectiveness of the Kelvin probe-based technique in providing complementary information on the energetics of perovskite surfaces and the necessity to monitor the work function of the probe to avoid erroneous conclusions when working on these materials.

9.
J Phys Chem Lett ; 9(1): 132-137, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29260875

RESUMEN

Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.

10.
J Phys Chem Lett ; 8(10): 2298-2303, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28475328

RESUMEN

We demonstrate that reversible chemical reactions occur at TiO2/gas and CH3NH3PbI3/gas interfaces on a time scale of seconds to minutes. The chemisorption strongly affects their electronic properties, mainly acting to deplete TiO2 of free electrons and passivate surface traps on the perovskite. Although the chemistry is not directly probed, we infer that reversible chemistry occurs at the solid-state TiO2/CH3NH3PbI3 interface. Equilibrium or steady-state concentrations established for adsorbed species associated with each material would be voltage- and illumination-dependent due to free or photocarriers being a main reactant. Interfacial chemistry provides an additional physical mechanism to explain the origins of normal and anomalous hysteretic current-voltage characteristics of perovskite devices. Furthermore, chemical reactions help us to understand why measured perovskite ion-transport properties and the nature of hysteresis are highly dependent on interfaces.

11.
ACS Nano ; 11(4): 3957-3964, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28332818

RESUMEN

Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH3NH3PbI3 and CH3NH3PbBr3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH3NH3PbI3 red/near-infrared LEDs and CH3NH3PbBr3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

12.
J Phys Chem Lett ; 7(14): 2722-9, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27364125

RESUMEN

We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA