Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 479(19): 2063-2086, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240066

RESUMEN

Previously, we discovered that deletion of c-Rel in the Eµ-Myc mouse model of lymphoma results in earlier onset of disease, a finding that contrasted with the expected function of this NF-κB subunit in B-cell malignancies. Here we report that Eµ-Myc/cRel-/- cells have an unexpected and major defect in the CHK1 pathway. Total and phospho proteomic analysis revealed that Eµ-Myc/cRel-/- lymphomas highly resemble wild-type (WT) Eµ-Myc lymphomas treated with an acute dose of the CHK1 inhibitor (CHK1i) CCT244747. Further analysis demonstrated that this is a consequence of Eµ-Myc/cRel-/- lymphomas having lost expression of CHK1 protein itself, an effect that also results in resistance to CCT244747 treatment in vivo. Similar down-regulation of CHK1 protein levels was also seen in CHK1i resistant U2OS osteosarcoma and Huh7 hepatocellular carcinoma cells. Further investigation revealed that the deubiquitinase USP1 regulates CHK1 proteolytic degradation and that its down-regulation in our model systems is responsible, at least in part, for these effects. We demonstrate that treating WT Eµ-Myc lymphoma cells with the USP1 inhibitor ML323 was highly effective at reducing tumour burden in vivo. Targeting USP1 activity may thus be an alternative therapeutic strategy in MYC-driven tumours.


Asunto(s)
Linfoma , Proteínas Proto-Oncogénicas c-myc , Aminopiridinas , Animales , Enzimas Desubicuitinizantes , Linfoma/metabolismo , Linfoma/patología , Ratones , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Pirimidinas
2.
Biochem J ; 479(19): 2131-2151, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240067

RESUMEN

The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.


Asunto(s)
Linfoma , Fosfatidilinositol 3-Quinasas , Animales , Inositol , Linfoma/tratamiento farmacológico , Linfoma/genética , Linfoma/metabolismo , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba , Quinasas p21 Activadas/genética
3.
Nat Commun ; 12(1): 4322, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262048

RESUMEN

Successful cell division relies on the timely removal of key cell cycle proteins such as securin. Securin inhibits separase, which cleaves the cohesin rings holding chromosomes together. Securin must be depleted before anaphase to ensure chromosome segregation occurs with anaphase. Here we find that in meiosis I, mouse oocytes contain an excess of securin over separase. We reveal a mechanism that promotes excess securin destruction in prometaphase I. Importantly, this mechanism relies on two phenylalanine residues within the separase-interacting segment (SIS) of securin that are only exposed when securin is not bound to separase. We suggest that these residues facilitate the removal of non-separase-bound securin ahead of metaphase, as inhibiting this period of destruction by mutating both residues causes the majority of oocytes to arrest in meiosis I. We further propose that cellular securin levels exceed the amount an oocyte is capable of removing in metaphase alone, such that the prometaphase destruction mechanism identified here is essential for correct meiotic progression in mouse oocytes.


Asunto(s)
Meiosis , Oocitos/citología , Securina/metabolismo , Secuencias de Aminoácidos , Animales , Segregación Cromosómica , Ratones , Mutación , Oocitos/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Prometafase , Unión Proteica , Securina/química , Securina/genética , Separasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA