Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Commun ; 14(1): 5547, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684231

RESUMEN

Serotonin is a neurotransmitter that signals through 5-HT receptors to control key functions in the nervous system. Serotonin receptors are also ubiquitously expressed in various organs and have been detected in embryos of different organisms. Potential morphogenetic functions of serotonin signaling have been proposed based on pharmacological studies but a mechanistic understanding is still lacking. Here, we uncover a role of serotonin signaling in axis extension of Drosophila embryos by regulating Myosin II (MyoII) activation, cell contractility and cell intercalation. We find that serotonin and serotonin receptors 5HT2A and 5HT2B form a signaling module that quantitatively regulates the amplitude of planar polarized MyoII contractility specified by Toll receptors and the GPCR Cirl. Remarkably, serotonin signaling also regulates actomyosin contractility at cell junctions, cellular flows and epiblast morphogenesis during chicken gastrulation. This phylogenetically conserved mechanical function of serotonin signaling in regulating actomyosin contractility and tissue flow reveals an ancestral role in morphogenesis of multicellular organisms.


Asunto(s)
Actomiosina , Serotonina , Animales , Citoesqueleto de Actina , Transducción de Señal , Proteínas del Citoesqueleto , Drosophila , Morfogénesis
2.
Dev Cell ; 56(11): 1574-1588.e7, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932333

RESUMEN

Interfaces between cells with distinct genetic identities elicit signals to organize local cell behaviors driving tissue morphogenesis. The Drosophila embryonic axis extension requires planar polarized enrichment of myosin-II powering oriented cell intercalations. Myosin-II levels are quantitatively controlled by GPCR signaling, whereas myosin-II polarity requires patterned expression of several Toll receptors. How Toll receptors polarize myosin-II and how this involves GPCRs remain unknown. Here, we report that differential expression of a single Toll receptor, Toll-8, polarizes myosin-II through binding to the adhesion GPCR Cirl/latrophilin. Asymmetric expression of Cirl is sufficient to enrich myosin-II, and Cirl localization is asymmetric at Toll-8 expression boundaries. Exploring the process dynamically, we reveal that Toll-8 and Cirl exhibit mutually dependent planar polarity in response to quantitative differences in Toll-8 expression between neighboring cells. Collectively, we propose that the cell surface protein complex Toll-8/Cirl self-organizes to generate local asymmetric interfaces essential for planar polarization of contractility.


Asunto(s)
Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Morfogénesis/genética , Miosina Tipo II/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Receptor Toll-Like 8/genética , Animales , Polaridad Celular/genética , Proteínas del Citoesqueleto/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/genética , Complejos Multiproteicos/genética , Contracción Muscular/genética
3.
EMBO Rep ; 9(6): 555-62, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18451879

RESUMEN

Atrophin family proteins, including the vertebrate arginine-glutamic acid dipeptide repeats protein (RERE) and Drosophila Atrophin (Atro), constitute a new class of nuclear receptor corepressors. Both RERE and Atro share the ELM2 (EGL-27 and MTA1 homology 2) and SANT (SWI3/ADA2/N-CoR/TFIII-B) domains, which are also present in other important transcriptional cofactors. Here, we report that the SANT domain in RERE binds to the histone methyltransferase G9a, and that both the ELM2 and SANT domains orchestrate molecular events that lead to a stable methylation of histone H3-lysine 9. We establish the physiological relevance of these interactions among Atrophin, G9a, and histone deacetylases 1 and 2 in Drosophila by showing that these proteins localize to overlapping chromosomal loci, and act together to suppress wing vein and melanotic-mass formation. This study not only shows a new function of the SANT domain and establishes its connection with the ELM2 domain, but also implies that a similar strategy is used by other ELM2-SANT proteins to repress gene transcription and to exert biological effects.


Asunto(s)
Proteínas de Drosophila/metabolismo , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Linaje de la Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Histona Desacetilasas/genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Unión Proteica , Proteína Metiltransferasas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Repetitivas de Aminoácido , Proteínas Represoras/genética
4.
Nat Cell Biol ; 18(3): 261-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26780298

RESUMEN

Polarized cell shape changes during tissue morphogenesis arise by controlling the subcellular distribution of myosin II. For instance, during Drosophila melanogaster gastrulation, apical constriction and cell intercalation are mediated by medial-apical myosin II pulses that power deformations, and polarized accumulation of myosin II that stabilizes these deformations. It remains unclear how tissue-specific factors control different patterns of myosin II activation and the ratchet-like myosin II dynamics. Here we report the function of a common pathway comprising the heterotrimeric G proteins Gα12/13, Gß13F and Gγ1 in activating and polarizing myosin II during Drosophila gastrulation. Gα12/13 and the Gß13F/γ1 complex constitute distinct signalling modules, which regulate myosin II dynamics medial-apically and/or junctionally in a tissue-dependent manner. We identify a ubiquitously expressed GPCR called Smog required for cell intercalation and apical constriction. Smog functions with other GPCRs to quantitatively control G proteins, resulting in stepwise activation of myosin II and irreversible cell shape changes. We propose that GPCR and G proteins constitute a general pathway for controlling actomyosin contractility in epithelia and that the activity of this pathway is polarized by tissue-specific regulators.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Morfogénesis/fisiología , Miosina Tipo II/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Drosophila , Drosophila melanogaster/embriología , Células Epiteliales/metabolismo , Epitelio/metabolismo
5.
PLoS One ; 4(10): e7437, 2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19823683

RESUMEN

Genetic screens in Drosophila designed to search for loci involved in gastrulation have identified four regions of the genome that are required zygotically for the formation of the ventral furrow. For three of these, the genes responsible for the mutant phenotypes have been found. We now describe a genetic characterization of the fourth region, which encompasses the cytogenetic interval 24C3-25B, and the mapping of genes involved in gastrulation in this region. We have determined the precise breakpoints of several existing deficiencies and have generated new deficiencies. Our results show that the region contains at least three different loci associated with gastrulation effects. One maternal effect gene involved in ventral furrow formation maps at 24F but could not be identified. For a second maternal effect gene which is required for germ band extension, we identify a candidate gene, CG31660, which encodes a G protein coupled receptor. Finally, one gene acts zygotically in ventral furrow formation and we identify it as Traf4.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Gastrulación , Alelos , Animales , Citogenética , Proteínas de Drosophila/genética , Femenino , Eliminación de Gen , Genes de Insecto , Técnicas Genéticas , Genómica , Heterocigoto , Masculino , Modelos Genéticos , Fenotipo
6.
Development ; 135(2): 291-300, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077590

RESUMEN

Hox genes are localised in complexes, encode conserved homeodomain transcription factors and have mostly been studied for their specialised functions: the formation of distinct structures along the anteroposterior axis. They probably derived via duplication followed by divergence, from a unique gene, suggesting that Hox genes may have retained a common function. The comparison of their homeodomain sequences groups Hox proteins into Anterior, Central and Posterior classes, reflecting their expression patterns in the head, trunk and tail, respectively. However, functional data supporting this classification are rare. Here, we re-examine a common activity of Hox genes in Drosophila: the repression of head in the trunk. First, we show that central and posterior Hox genes prevent the expression of the head specific gene optix in the trunk, providing a functional basis for the classification. Loss-of-function mutations of optix affect embryonic head development, whereas ectopic Optix expression strongly perturbs trunk development. Second, we demonstrate that the non-Hox genes teashirt, extradenticle and homothorax are required for the repression of optix and that Wingless signalling and Engrailed contribute to this repression. We propose that an evolutionary early function of Hox genes was to modify primitive head morphology with novel functions specialising the trunk appearing later on.


Asunto(s)
Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Genes Homeobox , Cabeza/embriología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Epidermis/embriología , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación/genética , Proteínas Represoras/metabolismo , Transducción de Señal
7.
Dev Biol ; 307(1): 142-51, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17524390

RESUMEN

teashirt (tsh) encodes a zinc-finger protein that is thought to be part of a network that contributes to regionalization of the Drosophila embryo and establishes the domains of Hox protein function. tsh and the Hox gene Sex combs reduced (Scr) are essential to establish the identity of the first thoracic segment. We used the development of the first thoracic segment as a paradigm for Scr dependent regional morphological distinctions. In this specific context, we asked whether Tsh protein could have a direct influence on Scr activity. Here we present evidence that Tsh interacts directly with Scr and this interaction depends in part on the presence of a short domain located in the N-terminal half of Teashirt called "acidic domain". In vivo, expression of full length Tsh can rescue the tsh null phenotype throughout the trunk whereas Tsh lacking the Scr interacting domain rescues all the trunk defects except in the prothorax. We suggest this provides insights into the mechanism by which Tsh, in concert with Scr, specifies the prothoracic identity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Represoras/metabolismo , Tórax/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Drosophila , Morfogénesis , Tórax/embriología
8.
Dev Biol ; 291(2): 278-90, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16445904

RESUMEN

Dentato-rubral and pallido-luysian atrophy (DRPLA) is a dominant, progressive neurodegenerative disease caused by the expansion of polyglutamine repeats within the human Atrophin-1 protein. Drosophila Atrophin and its human orthologue are thought to function as transcriptional co-repressors. Here, we report that Drosophila Atrophin participates in the negative regulation of Epidermal Growth Factor Receptor (EGFR) signaling both in the wing and the eye imaginal discs. In the wing pouch, Atrophin loss of function clones induces cell autonomous expression of the EGFR target gene Delta, and the formation of extra vein tissue, while overexpression of Atrophin inhibits EGFR-dependent vein formation. In the eye, Atrophin cooperates with other negative regulators of the EGFR signaling to prevent the differentiation of surplus photoreceptor cells and to repress Delta expression. Overexpression of Atrophin in the eye reduces the EGFR-dependent recruitment of cone cells. In both the eye and wing, epistasis tests show that Atrophin acts downstream or in parallel to the MAP kinase rolled to modulate EGFR signaling outputs. We show that Atrophin genetically cooperates with the nuclear repressor Yan to inhibit the EGFR signaling activity. Finally, we have found that expression of pathogenic or normal forms of human Atrophin-1 in the wing promotes wing vein differentiation and acts as dominant negative proteins inhibiting endogenous fly Atrophin activity.


Asunto(s)
Proteínas de Drosophila/fisiología , Receptores ErbB/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Animales , Movimiento Celular , Drosophila , Proteínas del Ojo/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Epilepsias Mioclónicas Progresivas/etiología , Epilepsias Mioclónicas Progresivas/genética , Células Fotorreceptoras/citología , Proteínas Represoras/fisiología
9.
Dev Biol ; 283(2): 446-58, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15936749

RESUMEN

The teashirt gene encodes a protein with three widely spaced zinc finger motifs that is crucial for specifying trunk identity in Drosophila embryos. Here, we describe a gene called tiptop, which encodes a protein highly similar to Teashirt. We have analyzed the expression patterns and functions of these two genes in the trunk of the embryo. Initially, teashirt and tiptop expressions are detected in distinct domains; teashirt in the trunk and tiptop in parts of the head and tail. In different mutant situations, we show that, in the trunk and head, they repress each other's expression. Unlike teashirt, we found that deletion of tiptop is homozygous viable and fertile. However, embryos lacking both gene activities display a more severe trunk phenotype than teashirt mutant embryos alone. Ectopic expression of either gene produces an almost identical phenotype, indicating that Teashirt and Tiptop have, on the whole, common activities. We conclude that Teashirt and Tiptop repress each other's expression and that Teashirt has a crucial role for trunk patterning that is in part masked by ectopic expression of Tiptop.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/fisiología , Epidermis/embriología , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Proteínas Represoras/genética , Factores de Transcripción/genética , Dedos de Zinc
10.
Rouxs Arch Dev Biol ; 197(1): 19-26, 1988 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28305320

RESUMEN

The phenotype of rotund (rn) null alleles is described, and compared to wild type. The mutants are expressed zygotically and cause position specific defects in certain imaginal discs (antenna, legs, wing, haltere and proboscis) and their corresponding adult derivatives. In the discs, specific folds are absent in rn mutants compared to wild type. Clonal analysis shows that the rn + gene is partially autonomous in its expression in cells destined to form certain distal parts of the adult appendages. The results are consistent with the idea that the rn + gene is required for normal morphogenesis of specific distal parts of the adult appendages.

11.
Rouxs Arch Dev Biol ; 197(8): 507-512, 1988 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28305477

RESUMEN

Random insertions of a promotor fused to a reporter gene, such as Lac-Z, reveal regulatory sequences that confer temporal and spatial patterns of gene expression in eukaryotes. These patterns may reflect the activity of a neighbouring gene and thus lead to the isolation of new genes essential for normal development. Here, we demonstrate that this hypothesis is true for an insertion into the well characterized segmentation gene, hairy, in Drosophila. The insertion is homozygous lethal and fails to complement other hairy alleles, giving the phenotype described for hairy mutations. The insertion is located at 66D on the polytene chromosome map, is within 300-600 bp 5' to the first hairy exon, and is orientated in the same sense (5'-3') as the hairy transcription unit. Expression of ß-galactosidase (ß-gal), deriving from the insertion, follows closely the spatio-temporal patterns of expression of hairy gene product during embryogenesis. In addition, other sites of ß-galactosidase expression are shown in the third larval instar stage and in the adult ovary. The results show that some insertions, giving restricted patterns of reporter gene expression, will reflect the temporo-spatial activity of a nearby gene.

12.
Development ; 131(5): 1065-73, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14973285

RESUMEN

Drosophila teashirt (tsh) functions as a region-specific homeotic gene that specifies trunk identity during embryogenesis. Based on sequence homology, three tsh-like (Tsh) genes have been identified in the mouse. Their expression patterns in specific regions of the trunk, limbs and gut raise the possibility that they may play similar roles to tsh in flies. By expressing the putative mouse Tsh genes in flies, we provide evidence that they behave in a very similar way to the fly tsh gene. First, ectopic expression of any of the three mouse Tsh genes, like that of tsh, induces head to trunk homeotic transformation. Second, mouse Tsh proteins can rescue both the homeotic and the segment polarity phenotypes of a tsh null mutant. Third, following ectopic expression, the three mouse Tsh genes affect the expression of the same target genes as tsh in the Drosophila embryo. Fourth, mouse Tsh genes, like tsh, are able to induce ectopic eyes in adult flies. Finally, all Tsh proteins contain a motif that recruits the C-terminal binding protein and contributes to their repression function. As no other vertebrate or fly protein has been shown to induce such effects upon ectopic expression, these results are consistent with the idea that the three mouse Tsh genes are functionally equivalent to the Drosophila tsh gene when expressed in developing Drosophila embryos.


Asunto(s)
Proteínas de Drosophila , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes Homeobox , Genes de Insecto , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Tipificación del Cuerpo/genética , Ojo/crecimiento & desarrollo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Ratones , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Especificidad de la Especie
13.
Development ; 130(4): 763-74, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12506006

RESUMEN

Fat is an atypical cadherin that controls both cell growth and planar polarity. Atrophin is a nuclear co-repressor that is also essential for planar polarity; however, it is not known what genes Atrophin controls in planar polarity, or how Atrophin activity is regulated during the establishment of planar polarity. We show that Atrophin binds to the cytoplasmic domain of Fat and that Atrophin mutants show strong genetic interactions with fat. We find that both Atrophin and fat clones in the eye have non-autonomous disruptions in planar polarity that are restricted to the polar border of clones and that there is rescue of planar polarity defects on the equatorial border of these clones. Both fat and Atrophin are required to control four-jointed expression. In addition our mosaic analysis demonstrates an enhanced requirement for Atrophin in the R3 photoreceptor. These data lead us to a model in which fat and Atrophin act twice in the determination of planar polarity in the eye: first in setting up positional information through the production of a planar polarity diffusible signal, and later in R3 fate determination.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Factores de Transcripción/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Diferenciación Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Polaridad Celular , Citoplasma/genética , Citoplasma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ojo/citología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Supresores de Tumor , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Células Fotorreceptoras de Invertebrados/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Transcripción Genética
14.
Dev Biol ; 241(1): 132-44, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11784100

RESUMEN

One function of the Wingless signaling pathway is to determine the naked, cuticle cell fate choice in the trunk epidermis of Drosophila larvae. The zinc finger protein Teashirt binds to the transactivator domain of Armadillo to modulate Wingless signaling output in the embryonic trunk and contributes to the naked cell fate choice. The Hedgehog pathway is also necessary for the correct specification of larval epidermal cell fate, which signals via the zinc finger protein, Cubitus interruptus. Here, we show that Cubitus interruptus also has a Wingless-independent function, which is required for the specification of the naked cell fate; previously, it had been assumed that Ci induces naked cuticle exclusively by regulation of wg. Wg and Hh signaling pathways may be acting combinatorially in the same, or individually in different, cells for this process, by regulating common sets of target genes. First, the loss of the naked cuticular phenotype in embryos lacking cubitus interruptus activity is very similar to that induced by a late loss of Wingless function. Second, overexpression of Cubitus interruptus causes the suppression of denticles (as Wingless does) in absence of Wingless activity in the anterior trunk. Using epistasis experiments, we conclude that different combinations of the three proteins Teashirt, Cubitus interruptus, and Armadillo are employed for the specification of naked cuticle at distinct positions both along the antero-posterior axis and within individual trunk segments. Finally, biochemical approaches suggest the existence of protein complexes consisting of Teashirt, Cubitus interruptus, and Armadillo.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila/embriología , Proteínas Represoras , Transactivadores , Animales , Proteínas del Dominio Armadillo , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Sustancias Macromoleculares , Mutación , Fenotipo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteína Wnt1
15.
Development ; 129(5): 1119-29, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11874908

RESUMEN

We have carried out a genetic screen designed to isolate regulators of teashirt expression. One of these regulators is the Grunge gene, which encodes a protein with motifs found in human arginine-glutamic acid dipeptide repeat, Metastasis-associated-like and Atrophin-1 proteins. Grunge is the only Atrophin-like protein in Drosophila, whereas several exist in humans. We provide evidence that Grunge is required for the proper regulation of teashirt but also has multiple activities in fly development. First, Grunge is crucial for correct segmentation during embryogenesis via a failure in the repression of at least four segmentation genes known to regulate teashirt. Second, Grunge acts positively to regulate teashirt expression in proximoventral parts of the leg. Grunge has other regulatory functions in the leg, including the patterning of ventral parts along the entire proximodistal axis and the proper spacing of bristles in all regions.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes de Insecto , Histona Desacetilasas , Proteínas Represoras , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Proteínas Portadoras/genética , Extremidades/embriología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores , Proteína Wnt1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA