Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 235: 116573, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37437865

RESUMEN

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Edición Génica , Linfocitos T/metabolismo
2.
Environ Res ; 234: 116556, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414389

RESUMEN

The extremely widespread and ubiquitous nature of plastics, estimated to boost its global production by 26 billion tons till 2050. The large chunks of plastic waste that decomposed down to micro- or nano plastics (MNPs) leads to various ill effects on biological entities. The conventional PET detection methods lack rapid detection of microplastics due to variances in microplastic features, long-drawn-out sample pre-processing procedures and complex instrumentation. Therefore, an instantaneous colorimetric evaluation of microplastic will ensures the simplicity of conducting assays on field. Several nanoparticle-based biosensors that detects proteins, nucleic acids, metabolites operate on either cluster or disperse state of nanoparticle. However, gold nanoparticle (AuNPs) emerges an ideal scaffold for sensory element in lateral flow biosensors due to their simple surface functionalization, unique optoelectronic properties and varied colour spectrum depending on morphologies and aggregation state. In this paper an effort has been made in the form of a hypothesis using in silico tools as a basis to detect polyethylene terephthalate (PET) - most abundant type of microplastic using gold nanoparticle based lateral flow biosensor. We retrieved sequences of PET-binding synthetic peptides and modelled their 3-D structure using I-Tasser server. The best protein model for each peptide sequences are docked with PET monomers - BHET, MHET and other PET polymeric ligands, to evaluate their binding affinities. The synthetic peptide SP 1 (WPAWKTHPILRM) docked with BHET and (MHET)4 exhibits 1.5-fold increases in binding affinity as compared to reference PET anchor peptide Dermaseptin SI (DSI). The GROMACS molecular dynamics simulation studies of synthetic peptide SP 1 - BHET & - (MHET)4 complexes for 50 ns further confirmed the stable binding. RMSF, RMSD, hydrogen bonds, Rg and SASA analysis provides useful structural insights of the SP 1 complexes as compared to reference DSI. Furthermore, SP 1 functionalized AuNP-based colorimetric device was described in detail for detection of PET.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Microplásticos , Plásticos/análisis , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Oro , Colorimetría , Polietileno
3.
Lipids Health Dis ; 22(1): 17, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717943

RESUMEN

BACKGROUND: Nonalcoholic fatty liver, or NAFLD, is the most common chronic liver ailment. It is characterized by excessive fat deposition in hepatocytes of individuals who consume little or no alcohol and are unaffected by specific liver damaging factors. It is also associated with extrahepatic manifestations such as chronic kidney disease, cardiovascular disease, and sleep apnea. The global burden of NAFLD is increasing at an alarming rate. However, no pharmacologically approved drugs against NAFLD are available owing to their complex pathophysiology. Genome-wide association studies have uncovered SNPs in the fat mass and obesity-associated gene (FTO) that are robustly associated with obesity and higher BMI. The prevalence of NAFLD increases in parallel with the increasing prevalence of obesity. Since FTO might play a crucial role in NAFLD development, the current study identified five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. METHODS: This study aims to identify potentially deleterious nonsynonymous SNPs (ns-SNPs) employing various in silico tools. Additionally, molecular modeling approaches further studied the structural changes caused by identified SNPs. Moreover, molecular dynamics studies finally investigated the binding potentials of the phytochemicals resveratrol, rosmarinic acid, and capsaicin with different mutant forms of FTO. RESULTS: The current investigation has five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. The present study identified five nsSNPs of the human gene FTO, Gly103Asp, Arg96Pro, Tyr295Cys, and Arg322Gln, with an apparent connection to the disease condition. Modulation of demethylation activity by phytomolecule scanning explains the hepatoprotective action of molecules. The current investigation also suggested that predicted mutations did not affect the binding ability of three polyphenols: rosamarinic acid, resveratrol, and capsaicin. CONCLUSION: This study showed that the predicted mutations in FTO did not affect the binding of three polyphenols. Thus, these three molecules can significantly aid drug development against FTO and NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polimorfismo de Nucleótido Simple/genética , Resveratrol/farmacología , Estudio de Asociación del Genoma Completo , Capsaicina/metabolismo , Hígado/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
4.
Rev Endocr Metab Disord ; 22(2): 421-451, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33052523

RESUMEN

About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote ß-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3ß), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamasomas/metabolismo , Nanotecnología , Estrés Oxidativo
5.
Mar Drugs ; 18(9)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961827

RESUMEN

Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer research have focused on natural medicinal products. Over the past decades, a great deal of initiatives was invested towards isolating and identifying new marine metabolites via pharmaceutical companies, and research institutions in general. Secondary marine metabolites are looked at as a favorable source of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse biological activities; therefore, this is an astonishing source of potentially new anticancer therapy. This review contains an extensive critical discussion on the potential of marine microbial compounds and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and exploring the underlying mechanisms of action. Current limitation, challenges, and future research pathways were also presented.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Cianobacterias/metabolismo , Microalgas/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Metabolismo Secundario
6.
Nanomedicine ; 18: 196-220, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30904587

RESUMEN

Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.


Asunto(s)
Infecciones por Henipavirus/virología , Nanotecnología/métodos , Virus Nipah/patogenicidad , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Henipavirus/diagnóstico , Infecciones por Henipavirus/tratamiento farmacológico , Infecciones por Henipavirus/patología , Humanos , Nanopartículas/química , Nanomedicina Teranóstica
7.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597283

RESUMEN

A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.


Asunto(s)
Antiinflamatorios/farmacología , Flavonoides/farmacología , Inflamación/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Biomarcadores , Ensayos Clínicos como Asunto , Susceptibilidad a Enfermedades , Evaluación Preclínica de Medicamentos , Flavonoides/química , Flavonoides/uso terapéutico , Humanos , Inflamación/complicaciones , Inflamación/diagnóstico , Mediadores de Inflamación/metabolismo , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/etiología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
8.
Biometals ; 31(2): 161-187, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29453655

RESUMEN

Minerals or trace elements in small amount are essential nutrients for every plant, but when the internal concentration exceeds the threshold, these essential elements do create phytotoxicity. Plant responses to elemental stresses are very common due to different anthropogenic activities; however it is a complex phenomenon with individual characteristics for various species. To cope up with the situation, a plant produces a group of strategies both in proteomic and genomic level to overcome it. Controlling the metal stress is known to activate a multigene response resulting in the changes in various proteins, which directly affects almost all biological processes in a living cell. Therefore, proteomic and genomic approaches can be useful for elucidating the molecular responses under metal stress. For this, it is tried to provide the latest knowledge and techniques used in proteomic and genomic study during nutritional stress and is represented here in review form.


Asunto(s)
Genómica/tendencias , Estado Nutricional/fisiología , Proteómica/tendencias , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Humanos , Oligoelementos
9.
RSC Adv ; 13(18): 12411-12429, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091622

RESUMEN

To minimize the usage of non-renewable resources and to maintain a sustainable environment, the exploitation of green nanobiopolymers should be enhanced. Biopolymers are generally developed from various microorganisms and plants in the specified condition. This review article discusses the current advances and trends of biopolymers, particularly in the arena of nanotechnology. In addition, discussion on various synthesis steps and structural characterization of green polymer materials like cellulose, chitin, and lignin is also encompassed. This article aims to coordinate the most recent outputs and possible future utilization of nanobiopolymers to the ecosystem with negligible effects by promoting the utilities of polymeric materials like polycaprolactones, starch, and nanocellulose. Additionally, strategic modification of cellulose into nanocellulose via rearrangement of the polymeric compound to serve various industrial and medical purposes has also been highlighted in the review. Specifically, the process of nanoencapsulation and its advancements in terms of nutritional aspects was also presented. The potential utility of green nanobiopolymers is one of the best cost-effective alternatives concerning circular economy and thereby helps to maintain sustainability.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37622692

RESUMEN

Plants from the genus Phoradendron and Viscum, also known as American and European mistletoe, are a group of hemiparasitic plants traditionally used to treat many diseases. Mistletoes have a rich content of natural compounds like terpenes, alkaloids, proteins, and phenolic compounds associated with their potential medicinal properties. In this sense, mistletoes have shown antiproliferative, antioxidant, anti-inflammatory, and antimicrobial activity, which has been attributed to their phytochemical constituents. The mechanisms in which mistletoe plants act vary and depend on their phytochemical content and distribution, which in part will depend on the mistletoe species. In this sense, recent literature research is needed to visualize state of the art in the ethnopharmacological potential of mistletoe. Thus, this literature review aims to systematically report recent studies (2010-2023) on the phytochemical characterization and bioactive studies of mistletoe plants, mainly the Viscum and Phoradendron genera. We gather recent information of 161 references selected in our research. Here we report that although there are several bioactivity studies of mistletoe species, bioavailability studies are still scarce, and the precise mechanisms of action are not fully known. We encourage that further studies include a systematic strategy to cover these areas of opportunity.

11.
Curr Pharm Biotechnol ; 23(1): 72-97, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33050862

RESUMEN

Nutritional supplementations are a form of nutrition sources that may help in improving the health complexities of a person throughout his or her life span. Being also categorized as food supplementations, nutraceuticals are products that are extracted from edible sources with medical benefits as well as primary nutritional values. Nutraceuticals can be considered as functional foods. There are evidences that nutraceutical supplementations can alter the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults, including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson's disease [PD], Multiple sclerosis [MS]) and metabolic disorders (Type-II diabetes, obesity and non-alcoholic fatty liver disease). They can even lessen the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) as well as bronchopulmonary dysplasia. Molecular perception of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. In this study, the pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways in the above non-communicable diseases is briefly described. This work also gives an overall introduction of the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Probióticos , Adulto , Suplementos Dietéticos , Femenino , Humanos , Recién Nacido , Masculino , Prebióticos , Embarazo
12.
Environ Sci Pollut Res Int ; 29(53): 80179-80221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36197618

RESUMEN

Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Inteligencia Artificial , Biodiversidad , Conservación de los Recursos Naturales/métodos
13.
Eur J Pharm Sci ; 171: 106125, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35033697

RESUMEN

Vascular endothelial growth factor (VEGF) is considered as one of the vital growth factors for angiogenesis, which is primarily responsible for the progress and maintenance of new vascular network in tumor. Numerous studies report that inhibition of VEGF-induced angiogenesis is a potent technique for cancer suppression. Recently, RNA interference, especially small interfering RNA (siRNA) signified a promising approach to suppress the gene expression. However, the clinical implementation of biological macromolecules such as siRNA is significantly limited because of stability and bioavailability issues. Herein, self-assembled peptide nanospheres have been generated from L,L-cyclic peptides using hydrophobic (Trp), positively charged (Arg) and cysteine (Cys) amino acid residues and demonstrated as vehicles for intracellular delivery of VEGF siRNA and VEGF antisense oligonucleotide. Formation of peptide nanostructures is confirmed by HR-TEM, AFM, SEM and DLS analysis. Possible mechanism of self-assembly of the cyclic peptides and their binding with macromolecules are demonstrated by in-silico analysis. Gel electrophoresis reveals that the newly generated peptide based organic materials exhibit strong binding affinity toward siRNAs / antisense oligonucleotides (ASOs) at optimum concentration. Flow cytometry and confocal microscopy results confirm the efficiency of the new biomaterials toward the intracellular delivery of fluorescent labeled siRNA / ASOs. Furthermore, VEGF expression evaluated by western blot and RT-PCR upon the delivery of functional VEGF siRNA/ASOs suggests that very low concentrations of VEGF siRNA/ASOs cause significant gene knockdown at protein and mRNA levels, respectively.


Asunto(s)
Nanosferas , Factor A de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Citoplasma/metabolismo , Péptidos Cíclicos , ARN Interferente Pequeño/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Biomed Res Int ; 2022: 1682502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35103234

RESUMEN

Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas de Diagnóstico Molecular , Nanotecnología/métodos , Humanos , Medicina de Precisión
15.
Forensic Sci Int ; 317: 110530, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33096398

RESUMEN

Wildlife trade and fraudulence in food, artefacts and cosmetic industries had raised serious concern in protection of the wild faunal diversity. Lack of proper tools and molecular based techniques for identification of wild species are some of the major constrains faced by the judiciary and law enforcement agencies while framing charges against poachers and illicit agitator. The emergence of wildlife forensics serves as a boon in solving long pending cases of wildlife crimes. Wildlife forensics have proven to be fast, accurate and reliable criminal investigation processes with comprehensive coverage and easy accessibility. It has also helped resolving taxonomic disputes, determining spatiotemporal genetic divergence, evolutionary history, origins and even endemism. Collaboration among inter-disciplinary fields has even led to engineered signature markers and phylogenetics for several species. Development in fields of genetics, molecular and evolutionary biology and other omics techniques have further contributed in accurate identification of species. Wildlife forensics, with the support of proper international mega database units for population reference, will be fundamental in wildlife investigations through its unlimited information sharing ability. The efficient conservation of species will, however, require a collaborative approach consisting of national policy makers, local stakeholders and implementation agencies in addition to experts from the scientific communities.


Asunto(s)
Animales Salvajes/genética , Conservación de los Recursos Naturales , Crimen , Ciencias Forenses/métodos , Pelaje de Animal , Animales , Huesos/anatomía & histología , Código de Barras del ADN Taxonómico , Dermatoglifia del ADN , ADN Mitocondrial , Bases de Datos Genéticas , Complejo IV de Transporte de Electrones , Marcadores Genéticos , Genoma Mitocondrial , Cabello/anatomía & histología , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Filogenia , Especificidad de la Especie
16.
Front Nutr ; 7: 117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850938

RESUMEN

Both pectin and pectinase are vitally imperative biomolecules in the biotechnological sector. These molecules are a feasible non-toxic contrivance of nature with extensive applicative perception. Understanding pectic substances and their structure, unique depolymerization, and biochemical properties such as a catalytic mechanism and the strong interrelationship among these molecules could immensely enhance their applicability in industries. For instance, gaining knowledge with respect to the versatile molecular heterogeneity of the compounds could be considered as the center of concern to resolve the industrial issues from multiple aspects. In the present review, an effort has been made to orchestrate the fundamental information related to structure, depolymerization characteristics, and classification of pectin as well as the types and biochemical properties of pectinase. Furthermore, various production methods related to the optimization of the product and its significant contribution to the pharmaceutical industry (either pectinase or derived pectic substances) are described in this article.

17.
Front Microbiol ; 11: 2098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193115

RESUMEN

The rapid dissemination of SARS-CoV-2 demonstrates how vulnerable it can make communities and is why it has attained the status of global pandemic. According to the estimation from Worldometer, the SARS-CoV-2 affected cases and deaths are exponentially increasing worldwide, marking the mortality rate as ∼3.8% with no probability of its cessation till now. Despite massive attempts and races among scientific communities in search of proper therapeutic options, the termination of this breakneck outbreak of COVID-19 has still not been made possible. Therefore, this review highlights the diverse molecular events induced by a viral infection, such as autophagy, unfolded protein response (UPR), and inflammasome, illustrating the intracellular cascades regulating viral replication inside the host cell. The SARS-CoV-2-mediated endoplasmic reticulum stress and apoptosis are also emphasized in the review. Additionally, host's immune response associated with SARS-CoV-2 infection, as well as the genetic and epigenetic changes, have been demonstrated, which altogether impart a better understanding of its epidemiology. Considering the drawbacks of available diagnostics and medications, herein we have presented the most sensitive nano-based biosensors for the rapid detection of viral components. Moreover, conceptualizing the viral-induced molecular changes inside its target cells, nano-based antiviral systems have also been proposed in this review.

18.
Environ Sci Pollut Res Int ; 26(4): 4116-4129, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30560532

RESUMEN

Zn stress seriously induces various toxic responses in Withania somnifera L., when accumulated above the threshold level which was confirmed by investigating the responses of protein, expression of antioxidant enzymes, and elemental profiling on accumulation of Zn. Zn was supplemented in the form of ZnSO4 (0, 25, 50, 100, and 200 µM) through MS liquid medium and allowed to grow the in vitro germinated plants for 7 and 14 days. The study revealed that when the application of Zn increased, a significant reduction of growth characteristics was noticed with alterations of proteins (both disappearance and de novo synthesis). The activity of CAT, SOD, and GPX were increased up to certain concentrations and then declined, which confirmed through in-gel activity under different treatments. RT-PCR was conducted by taking three sets of genes from CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) and found that gene RsCat from CAT and MnSOD from SOD have shown maximum expression of desired genes under Zn stress, which indicate plant's stress tolerance mechanisms. The proton-induced X-ray emission study confirmed an increasing order of uptake of Zn in plants by suppressing and expressing other elemental constituents which cause metal homeostasis. This study provides insights into molecular mechanisms associated with Zn causing toxicity to plants; however, cellular and subcellular studies are essential to explore molecule-molecule interaction during Zn stress in plants.


Asunto(s)
Estrés Fisiológico/efectos de los fármacos , Withania/efectos de los fármacos , Withania/fisiología , Zinc/toxicidad , Antioxidantes/metabolismo , Catalasa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo , Zinc/farmacocinética
19.
J Food Drug Anal ; 26(3): 927-939, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29976412

RESUMEN

Humans are a unique reservoir of heterogeneous and vivacious group of microbes, which together forms the human-microbiome superorganism. Human gut serves as a home to over 100-1000 microbial species, which primarily modulate the host internal environment and thereby, play a major role in host health. This spectacular symbiotic relationship has attracted extensive research in this field. More specifically, these organisms play key roles in defense function, eupepsia along with catabolism and anabolism, and impact brain-gut responses. The emergence of microbiota with resistance and tolerance to existing conventional drugs and antibiotics has decreased the drug efficacies. Furthermore, the modern biotechnology mediated nano-encapsulated multiplex supplements appear to be high cost and inconvenient. Henceforth, a simple, low-cost, receptive and intrinsic approach to achieve health benefits is vital in the present era. Supplementation with probiotics, prebiotics, and synbiotics has shown promising results against various enteric pathogens due to their unique ability to compete with pathogenic microbiota for adhesion sites, to alienate pathogens or to stimulate, modulate and regulate the host's immune response by initiating the activation of specific genes in and outside the host intestinal tract. Probiotics have also been shown to regulate fat storage and stimulate intestinal angiogenesis. Hence, this study aims to underline the possible beneficial impact of probiotics for human health and medical sectors and for better lifestyle.


Asunto(s)
Probióticos/administración & dosificación , Animales , Diabetes Mellitus/tratamiento farmacológico , Microbioma Gastrointestinal , Salud , Humanos , Neoplasias/tratamiento farmacológico , Obesidad/tratamiento farmacológico
20.
Microbiol Res ; 206: 131-140, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146250

RESUMEN

The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential.


Asunto(s)
Agricultura/métodos , Fenómenos Fisiológicos Bacterianos , Conservación de los Recursos Naturales/métodos , Desarrollo de la Planta , Plantas/microbiología , Microbiología del Suelo , Antibiosis , Biodegradación Ambiental , Biotecnología , Productos Agrícolas , Resistencia a la Enfermedad , Fertilizantes/microbiología , Nanotecnología , Fijación del Nitrógeno , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Polisacáridos Bacterianos/metabolismo , Potasio/metabolismo , Rizosfera , Sideróforos/metabolismo , Suelo/química , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA