Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 18(11): 1386-1394, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675434

RESUMEN

Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase-oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón/métodos , Aprendizaje Profundo , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares/química , Redes Neurales de la Computación , Chlamydomonas reinhardtii/metabolismo , Complejo de Proteína del Fotosistema II/química , Ribosomas/química , Ribulosa-Bifosfato Carboxilasa/química
2.
Bioinformatics ; 38(14): 3671-3673, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35639941

RESUMEN

SUMMARY: Analysis of intra- and extracellular dynamic like vesicles transport involves particle tracking algorithms. The design of a particle tracking pipeline is a routine but tedious task. Therefore, particle dynamics analysis is often performed by combining several pieces of software (filtering, detection, tracking, etc.) requiring many manual operations, and thus leading to poorly reproducible results. Given the new segmentation tools based on deep learning, modularity and interoperability between software have become essential in particle tracking algorithms. A good synergy between a particle detector and a tracker is of paramount importance. In addition, a user-friendly interface to control the quality of estimated trajectories is necessary. To address these issues, we developed STracking, a Python library that allows combining algorithms into standardized particle tracking pipelines. AVAILABILITY AND IMPLEMENTATION: STracking is available as a Python library using 'pip install' and the source code is publicly available on GitHub (https://github.com/sylvainprigent/stracking). A graphical interface is available using two napari plugins: napari-stracking and napari-tracks-reader. These napari plugins can be installed via the napari plugins menu or using 'pip install'. The napari plugin source codes are available on GitHub (https://github.com/sylvainprigent/napari-tracks-reader, https://github.com/sylvainprigent/napari-stracking). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bibliotecas , Programas Informáticos , Algoritmos , Biblioteca de Genes
3.
Opt Lett ; 48(2): 498-501, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638494

RESUMEN

An array detector allows a resolution gain for confocal microscopy by combining images sensed by a set of photomultipliers tubes (or sub-detectors). Several methods have been proposed to reconstruct a high-resolution image by linearly combining sub-detector images, especially the fluorescence emission difference (FED) technique. To improve the resolution and contrast of FED microscopy based on an array detector, we propose to associate sparse denoising with spatial adaptive estimation. We show on both calibration slides and real data that our approach applied to the full stack of spatially reassigned detector signals, enables us to achieve a higher reconstruction performance in terms of resolution, image contrast, and noise reduction.


Asunto(s)
Algoritmos , Microscopía Fluorescente , Microscopía Confocal , Calibración
4.
EMBO Rep ; 22(5): e50770, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900015

RESUMEN

In Caenorhabditis elegans zygote, astral microtubules generate forces essential to position the mitotic spindle, by pushing against and pulling from the cortex. Measuring microtubule dynamics there, we revealed the presence of two populations, corresponding to pulling and pushing events. It offers a unique opportunity to study, under physiological conditions, the variations of both spindle-positioning forces along space and time. We propose a threefold control of pulling force, by polarity, spindle position and mitotic progression. We showed that the sole anteroposterior asymmetry in dynein on-rate, encoding pulling force imbalance, is sufficient to cause posterior spindle displacement. The positional regulation, reflecting the number of microtubule contacts in the posterior-most region, reinforces this imbalance only in late anaphase. Furthermore, we exhibited the first direct proof that dynein processivity increases along mitosis. It reflects the temporal control of pulling forces, which strengthens at anaphase onset following mitotic progression and independently from chromatid separation. In contrast, the pushing force remains constant and symmetric and contributes to maintaining the spindle at the cell centre during metaphase.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Microtúbulos , Huso Acromático , Cigoto
5.
Brief Bioinform ; 21(4): 1136-1150, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31204428

RESUMEN

We present an overview of diffusion models commonly used for quantifying the dynamics of intracellular particles (e.g. biomolecules) inside eukaryotic living cells. It is established that inference on the modes of mobility of molecules is central in cell biology since it reflects interactions between structures and determines functions of biomolecules in the cell. In that context, Brownian motion is a key component in short distance transportation (e.g. connectivity for signal transduction). Another dynamical process that has been heavily studied in the past decade is the motor-mediated transport (e.g. dynein, kinesin and myosin) of molecules. Primarily supported by actin filament and microtubule network, it ensures spatial organization and temporal synchronization in the intracellular mechanisms and structures. Nevertheless, the complexity of internal structures and molecular processes in the living cell influence the molecular dynamics and prevent the systematic application of pure Brownian or directed motion modeling. On the one hand, cytoskeleton density will hinder the free displacement of the particle, a phenomenon called subdiffusion. On the other hand, the cytoskeleton elasticity combined with thermal bending can contribute a phenomenon called superdiffusion. This paper discusses the basics of diffusion modes observed in eukariotic cells, by introducing the essential properties of these processes. Applications of diffusion models include protein trafficking and transport and membrane diffusion.


Asunto(s)
Modelos Biológicos , Transporte Biológico , Citoesqueleto/metabolismo , Difusión , Microtúbulos/metabolismo , Procesos Estocásticos
6.
Biol Cell ; 113(11): 458-473, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34463964

RESUMEN

BACKGROUND INFORMATION: Mitochondria are dynamic organelles playing essential metabolic and signaling functions in cells. Their ultrastructure has largely been investigated with electron microscopy (EM) techniques. However, quantifying protein-protein proximities using EM is extremely challenging. Super-resolution microscopy techniques as direct stochastic optical reconstruction microscopy (dSTORM) now provide a fluorescent-based, quantitative alternative to EM. Recently, super-resolution microscopy approaches including dSTORM led to valuable advances in our knowledge of mitochondrial ultrastructure, and in linking it with new insights in organelle functions. Nevertheless, dSTORM is mostly used to image integral mitochondrial proteins, and there is little or no information on proteins transiently present at this compartment. The cancer-related Aurora kinase A/AURKA is a protein localized at various subcellular locations, including mitochondria. RESULTS: We first demonstrate that dSTORM coupled to GcoPS can resolve protein proximities within individual submitochondrial compartments. Then, we show that dSTORM provides sufficient spatial resolution to visualize and quantify the most abundant pool of endogenous AURKA in the mitochondrial matrix, as previously shown for overexpressed AURKA. In addition, we uncover a smaller pool of AURKA localized at the OMM, which could have a potential functional readout. We conclude by demonstrating that aldehyde-based fixatives are more specific for the OMM pool of the kinase instead. CONCLUSIONS: Our results indicate that dSTORM coupled to GcoPS colocalization analysis is a suitable approach to explore the compartmentalization of non-integral mitochondrial proteins as AURKA, in a qualitative and quantitative manner. This method also opens up the possibility of analyzing the proximity between AURKA and its multiple mitochondrial partners with exquisite spatial resolution, thereby allowing novel insights into the mitochondrial functions controlled by AURKA. SIGNIFICANCE: Probing and quantifying the presence of endogenous AURKA - a cell cycle-related protein localized at mitochondria - in the different organelle subcompartments, using quantitative dSTORM super-resolution microscopy.


Asunto(s)
Aurora Quinasa A , Microscopía , Mitocondrias , Proteínas Mitocondriales
7.
Bioinformatics ; 36(5): 1317-1325, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633779

RESUMEN

MOTIVATION: The revolution in light sheet microscopy enables the concurrent observation of thousands of dynamic processes, from single molecules to cellular organelles, with high spatiotemporal resolution. However, challenges in the interpretation of multidimensional data requires the fully automatic measurement of those motions to link local processes to cellular functions. This includes the design and the implementation of image processing pipelines able to deal with diverse motion types, and 3D visualization tools adapted to the human visual system. RESULTS: Here, we describe a new method for 3D motion estimation that addresses the aforementioned issues. We integrate 3D matching and variational approach to handle a diverse range of motion without any prior on the shape of moving objects. We compare different similarity measures to cope with intensity ambiguities and demonstrate the effectiveness of the Census signature for both stages. Additionally, we present two intuitive visualization approaches to adapt complex 3D measures into an interpretable 2D view, and a novel way to assess the quality of flow estimates in absence of ground truth. AVAILABILITY AND IMPLEMENTATION: https://team.inria.fr/serpico/data/3d-optical-flow-data/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Algoritmos , Humanos , Microscopía Fluorescente , Movimiento (Física)
8.
Bioinformatics ; 36(1): 317-329, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31214689

RESUMEN

MOTIVATION: Recent advances in molecular biology and fluorescence microscopy imaging have made possible the inference of the dynamics of single molecules in living cells. Changes of dynamics can occur along a trajectory. Then, an issue is to estimate the temporal change-points that is the times at which a change of dynamics occurs. The number of points in the trajectory required to detect such changes will depend on both the magnitude and type of the motion changes. Here, the number of points per trajectory is of the order of 102, even if in practice dramatic motion changes can be detected with less points. RESULTS: We propose a non-parametric procedure based on test statistics computed on local windows along the trajectory to detect the change-points. This algorithm controls the number of false change-point detections in the case where the trajectory is fully Brownian. We also develop a strategy for aggregating the detections obtained with different window sizes so that the window size is no longer a parameter to optimize. A Monte Carlo study is proposed to demonstrate the performances of the method and also to compare the procedure to two competitive algorithms. At the end, we illustrate the efficacy of the method on real data in 2D and 3D, depicting the motion of mRNA complexes-called mRNA-binding proteins-in neuronal dendrites, Galectin-3 endocytosis and trafficking within the cell. AVAILABILITY AND IMPLEMENTATION: A user-friendly Matlab package containing examples and the code of the simulations used in the paper is available at http://serpico.rennes.inria.fr/doku.php? id=software:cpanalysis:index. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , Difusión , Galectina 3/metabolismo , Microscopía Fluorescente , Método de Montecarlo , Movimiento (Física) , ARN Mensajero/metabolismo
11.
Phys Biol ; 17(2): 025002, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31791024

RESUMEN

In this paper, we aim to detect trapping areas (equivalently microdomains or confinement areas) within cells, corresponding to regions where molecules are trapped and thereby undergo subdiffusion. We propose an original computational approach that takes as input a set of molecule trajectories estimated by appropriate tracking methods. The core of the algorithm is based on a combination of clustering algorithms with trajectory classification procedures able to distinguish subdiffusion, superdiffusion and Brownian motion. The idea is to automatically identify trapping areas where we observe a high concentration of subdiffusive particles. We evaluate our proof of concept on artificial sequences obtained with a biophysics-based simulator (Fluosim), and we illustrate its potential on real TIRF microscopy data.


Asunto(s)
Algoritmos , Células/química , Células/metabolismo , Simulación por Computador , Movimiento Celular , Células/citología , Difusión , Modelos Moleculares
12.
Biometrics ; 76(1): 36-46, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31271216

RESUMEN

Colocalization aims at characterizing spatial associations between two fluorescently tagged biomolecules by quantifying the co-occurrence and correlation between the two channels acquired in fluorescence microscopy. Colocalization is presented either as the degree of overlap between the two channels or the overlays of the red and green images, with areas of yellow indicating colocalization of the molecules. This problem remains an open issue in diffraction-limited microscopy and raises new challenges with the emergence of superresolution imaging, a microscopic technique awarded by the 2014 Nobel prize in chemistry. We propose GcoPS, for Geo-coPositioning System, an original method that exploits the random sets structure of the tagged molecules to provide an explicit testing procedure. Our simulation study shows that GcoPS unequivocally outperforms the best competitive methods in adverse situations (noise, irregularly shaped fluorescent patterns, and different optical resolutions). GcoPS is also much faster, a decisive advantage to face the huge amount of data in superresolution imaging. We demonstrate the performances of GcoPS on two biological real data sets, obtained by conventional diffraction-limited microscopy technique and by superresolution technique, respectively.


Asunto(s)
Biometría/métodos , Microscopía Fluorescente/estadística & datos numéricos , Animales , Antígenos CD/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Simulación por Computador , Bases de Datos Factuales/estadística & datos numéricos , Colorantes Fluorescentes , Humanos , Lectinas Tipo C/metabolismo , Proteínas Luminiscentes/metabolismo , Lectinas de Unión a Manosa/metabolismo , Ratones , Proteínas Recombinantes de Fusión/metabolismo , Procesos Estocásticos , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Unión al GTP rab/metabolismo
13.
Eur Phys J E Soft Matter ; 43(5): 31, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32474823

RESUMEN

The fission yeast cell is shaped as a very regular cylinder ending by hemi-spheres at both cell ends. Its conserved phenotypes are often used as read-outs for classifying interacting genes and protein networks. Using Pascal and Young-Laplace laws, we proposed a framework where scaling arguments predicted shapes. Here we probed quantitatively one of these relations which predicts that the division site would be located closer to the cell end with the larger radius of curvature. By combining genetics and quantitative imaging, we tested experimentally whether altered shapes of cell end correlate with a displaced division site, leading to asymmetric cell division. Our results show that the division site position depends on the radii of curvatures of both ends. This new geometrical mechanism for the proper division plane positioning could be essential to achieve even partitioning of cellular material at each cell division.


Asunto(s)
Modelos Biológicos , Schizosaccharomyces/citología
14.
BMC Bioinformatics ; 19(1): 148, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673310

RESUMEN

BACKGROUND: Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. RESULTS: In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. CONCLUSIONS: We developed a novel de-arraying approach for TMA analysis. By combining wavelet-based detection, active contour segmentation, and thin-plate spline interpolation, our approach is able to handle TMA images with high dynamic, poor signal-to-noise ratio, complex background and non-linear deformation of TMA grid. In addition, the deformation estimation produces quantitative information to asset the manufacturing quality of TMAs.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Análisis de Matrices Tisulares/métodos , Algoritmos , Automatización , Simulación por Computador , Bases de Datos Genéticas , Humanos , Microscopía Fluorescente , Flujo de Trabajo
15.
BMC Bioinformatics ; 18(1): 352, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738814

RESUMEN

BACKGROUND: Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. RESULTS: A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. CONCLUSION: An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.


Asunto(s)
Antígenos CD/metabolismo , Membrana Celular/metabolismo , Modelos Moleculares , Receptores de Transferrina/metabolismo , Algoritmos , Animales , Difusión , Exocitosis , Microscopía Fluorescente
16.
Nat Methods ; 11(3): 281-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441936

RESUMEN

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Microscopía Fluorescente/métodos , Interpretación de Imagen Asistida por Computador/normas , Microscopía Fluorescente/normas
17.
J Opt Soc Am A Opt Image Sci Vis ; 32(10): 1821-35, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26479936

RESUMEN

Fluorescence lifetime is usually defined as the average nanosecond-scale delay between excitation and emission of fluorescence. It has been established that lifetime measurements yield numerous indications on cellular processes such as interprotein and intraprotein mechanisms through fluorescent tagging and Förster resonance energy transfer. In this area, frequency-domain fluorescence lifetime imaging microscopy is particularly appropriate to probe a sample noninvasively and quantify these interactions in living cells. The aim is then to measure the fluorescence lifetime in the sample at each location in space from fluorescence variations observed in a temporal sequence of images obtained by phase modulation of the detection signal. This leads to a sensitivity of lifetime determination to other sources of fluorescence variations such as intracellular motion. In this paper, we propose a robust statistical method for lifetime estimation for both background and small moving structures with a focus on intracellular vesicle trafficking.

18.
Proc Natl Acad Sci U S A ; 109(29): 11705-10, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753521

RESUMEN

In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells.


Asunto(s)
Actinas/metabolismo , Citoplasma/metabolismo , Meiosis/fisiología , Xenopus/fisiología , Animales , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Cinética , Microscopía Fluorescente , Xenopus/metabolismo
19.
Traffic ; 13(6): 815-33, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22420646

RESUMEN

A large body of knowledge relating to the constitution of Rab GTPase/Rab effector complexes and their impact on both membrane domain organization and overall membrane trafficking has been built up in recent years. However in the context of the live cell there are still many questions that remain to be answered, such as where and when these complexes assemble and where they perform their primary function(s). We describe here the dynamic processes that take place in the final steps of the Rab11A dependent recycling pathway, in the context of the membrane platform constituted by Myosin Vb, Rab11A, and Rab11-FIP2. We first confirm that a series of previously reported observations obtained during the study of a number of trafficking cargoes also apply to langerin. Langerin is a cargo molecule that traffics through Rab11A-positive membrane domains of the endosomal recycling pathway. In order to explore the relative dynamics of this set of partners, we make extensive use of a combinatory approach of Live-FRET, fast FRAP video, fast confocal and TIRF microscopy modalities. Our data show that the Myosin Vb/Rab11A/Rab11-FIP2 platform is spatially involved in the regulation of langerin trafficking at two distinct sites within live cells, first at the sorting site in the endosomal recycling compartment (ERC) where transport vesicles are formed, and subsequently, in a strict time-defined order, at the very late stage of docking/tethering and fusion of these langerin recycling vesicles to the plasma membrane.


Asunto(s)
Antígenos CD/metabolismo , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Melanoma/metabolismo , Microscopía Confocal/métodos , Transporte de Proteínas , Factores de Tiempo
20.
J Struct Biol ; 181(2): 169-78, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23178680

RESUMEN

Single-axis cryo-electron tomography of vitrified specimens has become a method of choice to reconstruct in three dimensions macromolecular assemblies in their cellular context or prepared from purified components. Here, we asked how a dual-axis acquisition scheme would improve three-dimensional reconstructions of microtubules assembled in vitro. We show that in single-axis tomograms, microtubules oriented close to the perpendicular of the tilt axis display diminished contrast, and ultimately transform into sets of parallel lines oriented in the direction of the electron beam when observed in cross-section. Analysis of their three-dimensional Fourier transform indicates that this imaging artifact is due to a decrease in the angular sampling of their equatorial components. Although the second orthogonal series does not fully complement the first one at the specimen level due to increased radiation damage, it still allows elongated features oriented in any directions to be correctly reconstructed, which might be essential for highly heterogeneous specimens such as cells.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microtúbulos/ultraestructura , Tomografía Computarizada por Rayos X/métodos , Análisis de Fourier , Guanosina Trifosfato/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA