Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 122(4): 1312-1329, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268796

RESUMEN

Objective assessment of the sensory pathways is crucial for understanding their development across the life span and how they may be affected by neurodevelopmental disorders (e.g., autism spectrum) and neurological pathologies (e.g., stroke, multiple sclerosis, etc.). Quick and passive measurements, for example, using electroencephalography (EEG), are especially important when working with infants and young children and with patient populations having communication deficits (e.g., aphasia). However, many EEG paradigms are limited to measuring activity from one sensory domain at a time, may be time consuming, and target only a subset of possible responses from that particular sensory domain (e.g., only auditory brainstem responses or only auditory P1-N1-P2 evoked potentials). Thus we developed a new multisensory paradigm that enables simultaneous, robust, and rapid (6-12 min) measurements of both auditory and visual EEG activity, including auditory brainstem responses, auditory and visual evoked potentials, as well as auditory and visual steady-state responses. This novel method allows us to examine neural activity at various stations along the auditory and visual hierarchies with an ecologically valid continuous speech stimulus, while an unrelated video is playing. Both the speech stimulus and the video can be customized for any population of interest. Furthermore, by using two simultaneous visual steady-state stimulation rates, we demonstrate the ability of this paradigm to track both parafoveal and peripheral visual processing concurrently. We report results from 25 healthy young adults, which validate this new paradigm.NEW & NOTEWORTHY A novel electroencephalography paradigm enables the rapid, reliable, and noninvasive assessment of neural activity along both auditory and visual pathways concurrently. The paradigm uses an ecologically valid continuous speech stimulus for auditory evaluation and can simultaneously track visual activity to both parafoveal and peripheral visual space. This new methodology may be particularly appealing to researchers and clinicians working with infants and young children and with patient populations with limited communication abilities.


Asunto(s)
Electroencefalografía/métodos , Potenciales Evocados Auditivos del Tronco Encefálico , Potenciales Evocados Visuales , Adolescente , Adulto , Vías Auditivas/fisiología , Femenino , Humanos , Masculino , Percepción del Habla , Vías Visuales/fisiología
2.
Sci Total Environ ; 932: 172658, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657813

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread presence and environmental persistence. Carbon-fluorine (C-F) bonds are major components among PFAS and among the strongest organic bonds, thus destroying PFAS may present significant challenge. Thermal treatment such as incineration is an effective and approved method for destroying many halogenated organic chemicals. Here, we present the results of existing studies and testing at combustion-based thermal treatment facilities and summarize what is known regarding PFAS destruction and mineralization at such units. Available results suggest the temperature and residence times reached by some thermal treatment systems are generally favorable to the destruction of PFAS, but the possibility for PFAS or fluorinated organic byproducts to escape destruction and adequate mineralization and be released into the air cannot be ruled out. Few studies have been conducted at full-scale operating facilities, and none to date have attempted to characterize possible fluorinated organic products of incomplete combustion (PICs). Further, the ability of existing air pollution control (APC) systems, designed primarily for particulate and acid gas control, to reduce PFAS air emissions has not been determined. These data gaps remain primarily due to the previous lack of available methods to characterize PFAS destruction and PIC concentrations in facility air emissions. However, newly developed stack testing methods offer an improved understanding of the extent to which thermal waste treatment technologies successfully destroy and mineralize PFAS in these waste streams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA