Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biotechnol Bioeng ; 119(3): 857-867, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34927241

RESUMEN

Cell death is one of the failure modes of mammalian cell culture. Apoptosis is a regulated cell death process mainly observed in cell culture. Timely detection of apoptosis onset allows opportunities for preventive controls that ensure high productivity and consistent product quality. Capacitance spectroscopy captures the apoptosis-related cellular properties changes and thus quantifies the percentage of dying cells. This study demonstrated a quantification model that measures the percentage of apoptotic cells using a capacitance spectrometer in an at-line setup. When predicting the independent test set collected from bench-scale bioreactors, the root-mean-squared error of prediction was 8.8% (equivalent to 9.9% of the prediction range). The predicted culture evolution trajectory aligned with measured values from the flow cytometer. Furthermore, this method alarms cell death onset earlier than the traditional viability test, that is, the trypan blue exclusion test. Compared to flow cytometry (the traditional early cell death detection method), this method is rapid, simple, and less labor-intensive. In addition, this at-line setup can be easily transferred between scales (e.g., lab-scale for development to manufacturing scale), which benefits process transfers between facilities, scale-up, and other process transitions.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Muerte Celular , Cricetinae , Cricetulus , Capacidad Eléctrica , Análisis Espectral
2.
Appl Microbiol Biotechnol ; 104(3): 1097-1108, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31858193

RESUMEN

The variability of trace metals in cell culture media is a potential manufacturing concern because it may significantly affect the production and quality of therapeutic proteins. Variability in trace metals in CHO cell culture has been shown to impact critical production metrics such as cell growth, viability, nutrient consumption, and production of recombinant proteins. To better understand the influence of excess supplementation, zinc and copper were initially supplemented with 50-µM concentrations to determine the impact on the production and quality of ß-glucuronidase, a lysosomal enzyme, in a parallel bioreactor system. Ethylenediaminetetraacetic acid (EDTA), a metal chelator, was included as another treatment to induce a depletion of trace metal bioavailability to examine deficiency. Samples were drawn daily to monitor cell growth and viability, nutrient levels, ß-glucuronidase activity, and trace zinc flux. Cell cycle analysis revealed the inhibition of sub-G0/G1 species in zinc supplemented cultures, maintaining higher viability compared to the control, EDTA-, and copper-supplemented cultures. Enzyme activity analysis in the harvests revealed higher specific activity of ß-glucuronidase in reactors supplemented with zinc. A confirmation run was conducted with supplementations of zinc at concentrations of 50, 100, and 150 µM. Further cell cycle analysis and caspase-3 analysis demonstrated the role of zinc as an apoptosis suppressor responsible for the enhanced harvest purity of ß-glucuronidase from zinc-supplemented bioreactors.


Asunto(s)
Apoptosis/efectos de los fármacos , Medios de Cultivo/química , Glucuronidasa/biosíntesis , Zinc/farmacología , Animales , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Células CHO , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Cobre/farmacología , Cricetulus
3.
Appl Microbiol Biotechnol ; 103(15): 6081-6095, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31175430

RESUMEN

ß-Glucuronidase is a lysosomal enzyme and a molecular model of a class of therapeutics approved as enzyme replacement therapies for lysosomal storage diseases. Understanding the effect of bioreactor process variables on the production and quality of the biologics is critical for maintaining quality and efficacy of the biotherapeutics. Here, we have investigated the effect of three process variables, in a head-to-head comparison using a parallel bioreactor system (n = 8), namely 0.25 mM butyrate addition, a temperature shift (from 37 to 32 °C), and a pH shift (from 7.0 to 6.7) along with a control (pH 7, temperature 37 °C, and no additive) on the production and quality of human recombinant ß-glucuronidase (GUS) by a Chinese hamster ovary (CHO) cell line. The study was performed as two independent runs (2 bioreactors per treatment per run; n ≤ 4). Although statistically not significant, protein production slightly increased with either 0.25 mM butyrate addition (13%) or pH shift (7%), whereas temperature shift decreased production (12%, not significant). Further characterization of the purified GUS samples showed that purification selectively enriched the mannose-6-phosphate (M6P)-containing GUS protein. Noticeably, a variation observed for the critical quality attribute (CQA) of the enzyme, namely M6P content, decreased after purification, across treatment replicates and, more so, across different treatments. The dimer content in the purified samples was comparable (~25%), and no significant discrepancy was observed in terms of GUS charge variants by capillary electrophoresis analysis. MALDI-TOF/TOF analysis of released N-glycans from GUS showed a minor variation in glycoforms among the treatment groups. Temperature shift resulted in a slightly increased sialylated glycan content (21.6%) when compared to control (15.5%). These results suggest that bioreactor processes have a differential effect, and better control is required for achieving improved production of GUS enzyme in CHO cells without affecting drastically its CQAs. However, the purification method allowed for enrichment of GUS with similar CQA profiles, regardless of the upstream treatments, indicating for the first time that the effect of slight alterations in upstream process parameters on the CQA profile can be offset with an effective and robust purification method downstream to maintain drug substance uniformity.


Asunto(s)
Reactores Biológicos , Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Glucuronidasa/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Animales , Butiratos/metabolismo , Células CHO , Cricetulus , Medios de Cultivo/química , Femenino , Glucuronidasa/biosíntesis , Glucuronidasa/genética , Humanos , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Temperatura
4.
Protein Expr Purif ; 140: 28-35, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28734840

RESUMEN

Human ß-glucuronidase (GUS; EC 3.2.1.31) is a lysosomal enzyme that catalyzes the hydrolysis of ß-d-glucuronic acid residues from the non-reducing termini of glycosaminoglycans. Impairment in GUS function leads to the metabolic disorder mucopolysaccharidosis type VII, also known as Sly syndrome. We produced GUS from a CHO cell line grown in suspension in a 15 L perfused bioreactor and developed a three step purification procedure that yields ∼99% pure enzyme with a recovery of more than 40%. The method can be completed in two days and has the potential to be integrated into a continuous manufacturing scheme.


Asunto(s)
Glucuronidasa/biosíntesis , Glucuronidasa/aislamiento & purificación , Enfermedades por Almacenamiento Lisosomal/enzimología , Animales , Células CHO/enzimología , Cricetulus , Glucuronidasa/química , Humanos , Enfermedades por Almacenamiento Lisosomal/patología
5.
Biotechnol Prog ; 40(2): e3424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38178645

RESUMEN

The previous research showcased a partial least squares (PLS) regression model accurately predicting cell death percentages using in-line capacitance spectra. The current study advances the model accuracy through adaptive modeling employing a data fusion approach. This strategy enhances prediction performance by incorporating variables from the Cole-Cole model, conductivity and its derivatives over time, and Mahalanobis distance into the predictor matrix (X-matrix). Firstly, the Cole-Cole model, a mechanistic model with parameters linked to early cell death onset, was integrated to enhance prediction performance. Secondly, the inclusion of conductivity and its derivatives over time in the X-matrix mitigated prediction fluctuations resulting from abrupt conductivity changes during process operations. Thirdly, Mahalanobis distance, depicting spectral changes relative to a reference spectrum from a previous time point, improved model adaptability to independent test sets, thereby enhancing performance. The final data fusion model substantially decreased root-mean squared error of prediction (RMSEP) by around 50%, which is a significant boost in prediction accuracy compared to the prior PLS model. Robustness against reference spectrum selection was confirmed by consistent performance across various time points. In conclusion, this study illustrates that the data fusion strategy substantially enhances the model accuracy compared to the previous model relying solely on capacitance spectra.


Asunto(s)
Apoptosis , Análisis Espectral , Análisis de los Mínimos Cuadrados
6.
Biotechnol J ; 18(3): e2200231, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36479620

RESUMEN

BACKGROUND/AIMS: Previous work developed a quantitative model using capacitance spectroscopy in an at-line setup to predict the dying cell percentage measured from a flow cytometer. This work aimed to transfer the at-line model to monitor lab-scale bioreactors in real-time, waiving the need for frequent sampling and enabling precise controls. METHODS AND RESULTS: Due to the difference between the at-line and in-line capacitance probes, direct application of the at-line model resulted in poor accuracy and high prediction bias. A new model with a variable range and offering similar spectral shape across all probes was first constructed, improving prediction accuracy. Moreover, the global calibration method included the variance of different probes and scales in the model, reducing prediction bias. External parameter orthogonalization, a preprocessing method, also mitigated the interference from feeding, which further improved model performance. The root-mean-square error of prediction of the final model was 6.56% (8.42% of the prediction range) with an R2 of 92.4%. CONCLUSION: The culture evolution trajectory predicted by the in-line model captured the cell death and alarmed cell death onset earlier than the trypan blue exclusion test. Additionally, the incorporation of at-line spectra following orthogonal design into the calibration set was shown to generate calibration models that are more robust than the calibration models constructed using the in-line spectra only. This is advantageous, as at-line spectral collection is easier, faster, and more material-sparing than in-line spectra collection.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Animales , Técnicas de Cultivo de Célula/métodos , Análisis Espectral , Muerte Celular , Capacidad Eléctrica , Mamíferos , Calibración
7.
Int J Pharm ; 604: 120677, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33961953

RESUMEN

The physical and chemical stability of therapeutic peptides presents challenges in developing robust formulations. The stability of the formulation affects product safety, efficacy and quality. Therefore, an understanding of the effects of formulation variables on the peptide's conformational structure and on its possible physical and chemical degradation is vital. To this end, computational and experimental analysis were employed to investigate the impact of formulation, peptide folding and product handling on oxidation, fibrillar aggregation and gelation of teriparatide. Teriparatide was used as a model drug due to the correlation of its conformation in solution with its pharmacological activity. Fibrillar aggregation and gelation were monitored using four orthogonal techniques. An innovative, automated platform coupled with ion mobility mass spectrometry was used for profiling chemical degradants. Increases in teriparatide concentration, pH, and ionic strength were found to increase the rate of fibrillar aggregation and gelation. Conversely, an increase in peptide folding and stabilization of the folded structures was found to decrease the rate of fibrillar aggregation and gelation. Moreover, the rate of oxidation was found to be inversely related to its solution concentration and extent of peptide folding. The present study provides an insight into formulation strategies designed to reduce the potential risk of physical and chemical degradation of peptides with a defined conformation.


Asunto(s)
Péptidos , Conformación Molecular , Concentración Osmolar , Oxidación-Reducción
8.
Cell Chem Biol ; 25(4): 357-369.e6, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29396292

RESUMEN

Aberrant hedgehog (Hh) signaling contributes to the pathogenesis of multiple cancers. Available inhibitors target Smoothened (Smo), which can acquire mutations causing drug resistance. Thus, compounds that inhibit Hh signaling downstream of Smo are urgently needed. We identified dynarrestin, a novel inhibitor of cytoplasmic dyneins 1 and 2. Dynarrestin acts reversibly to inhibit cytoplasmic dynein 1-dependent microtubule binding and motility in vitro without affecting ATP hydrolysis. It rapidly and reversibly inhibits endosome movement in living cells and perturbs mitosis by inducing spindle misorientation and pseudoprometaphase delay. Dynarrestin reversibly inhibits cytoplasmic dynein 2-dependent intraflagellar transport (IFT) of the cargo IFT88 and flux of Smo within cilia without interfering with ciliogenesis and suppresses Hh-dependent proliferation of neuronal precursors and tumor cells. As such, dynarrestin is a valuable tool for probing cytoplasmic dynein-dependent cellular processes and a promising compound for medicinal chemistry programs aimed at development of anti-cancer drugs.


Asunto(s)
Dineínas Citoplasmáticas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cilios/efectos de los fármacos , Cilios/metabolismo , Dineínas Citoplasmáticas/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Mitosis/efectos de los fármacos , Células 3T3 NIH , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
Biotechniques ; 63(3): 117-123, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911315

RESUMEN

Phosphorylation is an important post-translational modification (PTM) of proteins and a critical quality attribute for protein therapeutics, especially if it is required for protein function or sub-cellular targeting. Most current methods to quantify phosphorylation are time-consuming, indirect, or require specific instrumentation and technical skills. Here, we report the adaptation of a phosphate-specific binding dye and common laboratory instruments for quantification of relative amounts of phosphorylated glycans as well as phosphorylation of amino acid residues on the backbones of proteins. Our results show that quantification of phosphorylation using the new method agrees with published data on the number of phosphorylated glycosylation sites for two lysosomal enzymes: ß-glucuronidase (GUS) and cathepsin D.


Asunto(s)
Aminoácidos/química , Electroforesis en Gel de Poliacrilamida/métodos , Polisacáridos/química , Procesamiento Proteico-Postraduccional , Animales , Células CHO , Catepsina D/química , Cricetulus , Glucuronidasa/química , Glicosilación , Humanos , Procesamiento de Imagen Asistido por Computador , Fosforilación , Piridinas/química
11.
Nat Struct Mol Biol ; 22(4): 345-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751425

RESUMEN

Cytoplasmic dynein associates with dynactin to drive cargo movement on microtubules, but the structure of the dynein-dynactin complex is unknown. Using electron microscopy, we determined the organization of native bovine dynein, dynactin and the dynein-dynactin-microtubule quaternary complex. In the microtubule-bound complex, the dynein motor domains are positioned for processive unidirectional movement, and the cargo-binding domains of both dynein and dynactin are accessible.


Asunto(s)
Dineínas/química , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Animales , Bovinos , Microscopía por Crioelectrón , Complejo Dinactina , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares
12.
Mol Biol Cell ; 26(14): 2664-72, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26023088

RESUMEN

Axonal transport is critical for maintaining synaptic transmission. Of interest, anterograde and retrograde axonal transport appear to be interdependent, as perturbing one directional motor often impairs movement in the opposite direction. Here live imaging of Drosophila and hippocampal neuron dense-core vesicles (DCVs) containing a neuropeptide or brain-derived neurotrophic factor shows that the F-actin depolymerizing macrolide toxin mycalolide B (MB) rapidly and selectively abolishes retrograde, but not anterograde, transport in the axon and the nerve terminal. Latrunculin A does not mimic MB, demonstrating that F-actin depolymerization is not responsible for unidirectional transport inhibition. Given that dynactin initiates retrograde transport and that amino acid sequences implicated in macrolide toxin binding are found in the dynactin component actin-related protein 1, we examined dynactin integrity. Remarkably, cell extract and purified protein experiments show that MB induces disassembly of the dynactin complex. Thus imaging selective retrograde transport inhibition led to the discovery of a small-molecule dynactin disruptor. The rapid unidirectional inhibition by MB suggests that dynactin is absolutely required for retrograde DCV transport but does not directly facilitate ongoing anterograde DCV transport in the axon or nerve terminal. More generally, MB's effects bolster the conclusion that anterograde and retrograde axonal transport are not necessarily interdependent.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Oxazoles/farmacología , Vesículas Secretoras/metabolismo , Actinas/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Drosophila/efectos de los fármacos , Proteínas de Drosophila , Complejo Dinactina , Femenino , Masculino , Toxinas Marinas , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Neuropéptidos/metabolismo , Multimerización de Proteína , Ratas , Vesículas Secretoras/efectos de los fármacos
13.
Mol Biol Cell ; 24(22): 3522-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24025714

RESUMEN

Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end-directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein-dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.


Asunto(s)
Dineínas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Huso Acromático/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Proteínas del Citoesqueleto , Complejo Dinactina , Dineínas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Morfogénesis/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Huso Acromático/ultraestructura , Proteínas de Xenopus/metabolismo , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo , Cigoto/química , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA