Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 14(6): R154, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23216791

RESUMEN

INTRODUCTION: Deregulation of cadherin expression, in particular the loss of epithelial (E)-cadherin and gain of neural (N)-cadherin, has been implicated in carcinoma progression. We previously showed that endothelial cell-specific vascular endothelial (VE)-cadherin can be expressed aberrantly on tumor cells both in human breast cancer and in experimental mouse mammary carcinoma. Functional analyses revealed that VE-cadherin promotes tumor cell proliferation and invasion by stimulating transforming growth factor (TGF)-ß signaling. Here, we investigate the functional interplay between N-cadherin and VE-cadherin in breast cancer. METHODS: The expression of N-cadherin and VE-cadherin was evaluated by immunohistochemistry in a tissue microarray with 84 invasive human breast carcinomas. VE-cadherin and N-cadherin expression in mouse mammary carcinoma cells was manipulated by RNA interference or overexpression, and cells were then analyzed by immunofluorescence, reverse transcriptase-polymerase chain reaction, and western blot. Experimental tumors were generated by transplantation of the modified mouse mammary carcinoma cells into immunocompetent mice. Tumor growth was monitored, and tumor tissue was subjected to histological analysis. RESULTS: VE-cadherin and N-cadherin were largely co-expressed in invasive human breast cancers. Silencing of N-cadherin in mouse mammary carcinoma cells led to decreased VE-cadherin expression and induced changes indicative of mesenchymal-epithelial transition, as indicated by re-induction of E-cadherin, localization of ß-catenin at the cell membrane, decreased expression of vimentin and SIP1, and gain of epithelial morphology. Suppression of N-cadherin expression also inhibited tumor growth in vivo, even when VE-cadherin expression was forced. CONCLUSIONS: Our results highlight the critical role of N-cadherin in breast cancer progression and show that N-cadherin is involved in maintaining the malignant tumor cell phenotype. The presence of N-cadherin prevents the re-expression of E-cadherin and localization of ß-catenin at the plasma membrane of mesenchymal mammary carcinoma cells. N-cadherin is also required to maintain the expression of VE-cadherin in malignant tumor cells but not vice versa. Thus, N-cadherin acts in concert with VE-cadherin to promote tumor growth.


Asunto(s)
Antígenos CD/biosíntesis , Neoplasias de la Mama/patología , Cadherinas/biosíntesis , Endotelio Vascular/metabolismo , beta Catenina/metabolismo , Animales , Antígenos CD/genética , Mama/patología , Cadherinas/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/biosíntesis , Vimentina/biosíntesis
2.
Int J Cancer ; 131(5): E603-13, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22095574

RESUMEN

Recent studies have revealed that the maturation state of vessels in tumors, in addition to vascularity, is a critical determinant of tumor growth. The role of oxygen-dependent signaling pathways in hypoxia-stimulated angiogenesis is well established, however, little is known about their impact on vessel maturation in tumors. Here, we have studied the function of the cellular oxygen sensor, factor inhibiting HIF-1 (FIH), which controls the activity of hypoxia-inducible factor-1. FIH silencing in mouse LM8 osteosarcoma stimulated angiogenesis but did not influence tumor growth. In contrast, FIH overexpression led to increased pericyte coverage of the tumor vasculature, reduced vessel leakiness and enhanced tumor growth. Vessel maturation was paralleled by up-regulation of platelet-derived growth factor (PDGF)-C in tumors and expression of PDGF receptor-α on pericytes. Ablation of PDGF-C in FIH-overexpressing tumor cells reduced pericyte coverage and tumor growth. Our data suggest that FIH-mediated PDGF-C induction in LM8 osteosarcoma stimulates the recruitment of PDGFR-α positive pericytes to the tumor vasculature, leading to vessel maturation and enhanced tumor growth.


Asunto(s)
Neoplasias Óseas/irrigación sanguínea , Neoplasias Óseas/patología , Proliferación Celular , Linfocinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Osteosarcoma/irrigación sanguínea , Osteosarcoma/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Inductores de la Angiogénesis , Animales , Apoptosis , Western Blotting , Neoplasias Óseas/metabolismo , Femenino , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Técnicas para Inmunoenzimas , Linfocinas/antagonistas & inhibidores , Linfocinas/genética , Ratones , Ratones Endogámicos C3H , Oxigenasas de Función Mixta/genética , Neovascularización Patológica , Osteosarcoma/metabolismo , Pericitos/metabolismo , Pericitos/patología , Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Factor de Crecimiento Derivado de Plaquetas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Tumorales Cultivadas
3.
Biochem Biophys Res Commun ; 387(4): 705-11, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19631610

RESUMEN

Hypoxia-inducible factors are crucial in the regulatory process of oxygen homeostasis of vertebrate cells. Inhibition of prolyl hydroxylation of HIF-alpha subunits by prolyl-hydroxylases (PHD1, PHD2 and PHD3) leads to transcription of a greater number of hypoxia responsive genes. We have investigated the subcellular distribution and the molecular mechanisms regulating the intracellular allocation of PHD1 and PHD2. As reported earlier we find PHD1 located exclusively in the nucleus. We demonstrate that nuclear import of PHD1 occurs importin alpha/beta dependently and relies on a nuclear localisation signal (NLS). By contrast PHD2 is cycling between nucleus and cytoplasm, and nuclear import seems to be independent of "classical" importin alpha/beta receptors. Furthermore, we reveal that the exit of PHD2 from the nucleus requires CRM1 and the N-terminal 100 amino acids of the protein. Our findings provide new insights into the mechanisms of the regulation of the oxygen sensor cascade of PHDs in different cellular compartments.


Asunto(s)
Carioferinas/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/enzimología , Citoplasma/enzimología , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Señales de Localización Nuclear/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Estructura Terciaria de Proteína
4.
Mol Cancer Res ; 11(11): 1337-48, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24048703

RESUMEN

UNLABELLED: Solid tumor growth is intimately associated with angiogenesis, a process that is efficiently triggered by hypoxia. Therefore, oxygen-sensitive signaling pathways are thought to play a critical role in tumor angiogenesis and progression. Here, the function of prolyl hydroxylase-4 (PHD4), a relative of the prolyl hydroxylase domain proteins 1-3 that promote the degradation of hypoxia-inducible factors (HIF), was interrogated. To test the hypothesis that PHD4 might inhibit tumor angiogenesis, it was overexpressed in osteosarcoma cells, and unexpectedly, this manipulation led to increased tumor blood vessel density. However, the newly formed blood vessels were smaller than normal and appeared to be partially nonfunctional, as indicated by poor vessel perfusion. PHD4 overexpression in tumor cells stimulated the expression of TGF-α, which was necessary and sufficient to promote angiogenic sprouting of endothelial cells. On the other hand, PHD4 overexpression reduced HIF-2α protein levels, which in turn inhibited in vivo tumor growth. Combined, elevated PHD4 levels deregulate angiogenesis via increased TGF-α expression in vitro and in vivo. These data support the hypothesis that tumor growth can be uncoupled from vessel density and that the individual PHD family members exert distinct functions in tumors. IMPLICATIONS: PHD4 influences tumor growth and vascularization through discrete mechanisms and molecular pathways that likely have therapeutic potential.


Asunto(s)
Neovascularización Patológica/metabolismo , Osteosarcoma/patología , Prolil Hidroxilasas/metabolismo , Sarcoma Experimental/patología , Factor de Crecimiento Transformador alfa/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Endoteliales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C3H , Neovascularización Patológica/genética , Osteosarcoma/metabolismo , Prolil Hidroxilasas/genética , Sarcoma Experimental/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA