Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(22): 6964-6971, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37934909

RESUMEN

The electrostatic properties of proteins arise from the number and distribution of polar and charged residues. Electrostatic interactions in proteins play a critical role in numerous processes such as molecular recognition, protein solubility, viscosity, and antibody developability. Thus, characterizing and quantifying electrostatic properties of a protein are prerequisites for understanding these processes. Here, we present PEP-Patch, a tool to visualize and quantify the electrostatic potential on the protein surface in terms of surface patches, denoting separated areas of the surface with a common physical property. We highlight its applicability to elucidate protease substrate specificity and antibody-antigen recognition and predict heparin column retention times of antibodies as an indicator of pharmacokinetics.


Asunto(s)
Anticuerpos , Proteínas , Electricidad Estática , Proteínas/química , Solubilidad , Viscosidad
2.
Biophys J ; 120(1): 143-157, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33220303

RESUMEN

A major challenge in the development of antibody biotherapeutics is their tendency to aggregate. One root cause for aggregation is exposure of hydrophobic surface regions to the solvent. Many current techniques predict the relative aggregation propensity of antibodies via precalculated scales for the hydrophobicity or aggregation propensity of single amino acids. However, those scales cannot describe the nonadditive effects of a residue's surrounding on its hydrophobicity. Therefore, they are inherently limited in their ability to describe the impact of subtle differences in molecular structure on the overall hydrophobicity. Here, we introduce a physics-based approach to describe hydrophobicity in terms of the hydration free energy using grid inhomogeneous solvation theory (GIST). We apply this method to assess the effects of starting structures, conformational sampling, and protonation states on the hydrophobicity of antibodies. Our results reveal that high-quality starting structures, i.e., crystal structures, are crucial for the prediction of hydrophobicity and that conformational sampling can compensate errors introduced by the starting structure. On the other hand, sampling of protonation states only leads to good results when combined with high-quality structures, whereas it can even be detrimental otherwise. We conclude by pointing out that a single static homology model may not be adequate for predicting hydrophobicity.


Asunto(s)
Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Estructura Molecular , Solventes
3.
Mol Pharm ; 18(6): 2208-2217, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34014104

RESUMEN

The current standard of care for antivascular endothelial growth factor (VEGF) treatment requires frequent intravitreal (IVT) injections of protein therapeutics, as a result of limited retention within the eye. A thorough understanding of the determinants of ocular pharmacokinetics (PK) and its translation across species is an essential prerequisite for developing more durable treatments. In this work, we studied the ocular PK in macaques of the protein formats that comprise today's anti-VEGF standard of care. Cynomolgus monkeys received a single IVT injection of a single-chain variable fragment (scFv, brolucizumab), antigen-binding fragment (Fab, ranibizumab), fragment crystallizable-fusion protein (Fc-fusion, aflibercept), or immunoglobulin G monoclonal antibody (IgG, VA2 CrossMAb). Drug concentrations were determined in aqueous humor samples collected up to 42 days postinjection using immunoassay methods. The ocular half-life (t1/2) was 2.28, 2.62, 3.13, and 3.26 days for scFv, Fab, Fc-fusion, and IgG, respectively. A correlation with human t1/2 values from the literature confirmed the translational significance of the cynomolgus monkey as an animal model for ocular research. The relation between ocular t1/2 and molecular size was also investigated. Size was inferred from the molecular weight (MW) or determined experimentally by dynamic light scattering. The MW and hydrodynamic radius were found to be good predictors for the ocular t1/2 of globular proteins. The analysis showed that molecular size is a determinant of ocular disposition and may be used in lieu of dedicated PK studies in animals.


Asunto(s)
Inhibidores de la Angiogénesis/farmacocinética , Humor Acuoso/metabolismo , Cuerpo Vítreo/metabolismo , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacocinética , Semivida , Inyecciones Intravítreas , Macaca fascicularis , Modelos Animales , Peso Molecular , Ranibizumab/administración & dosificación , Ranibizumab/química , Ranibizumab/farmacocinética , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Receptores de Factores de Crecimiento Endotelial Vascular/química , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética
4.
Mol Pharm ; 17(2): 695-709, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876425

RESUMEN

Therapeutic antibodies administered intravitreally are the current standard of care to treat retinal diseases. The ocular half-life (t1/2) is a key determinant of the duration of target suppression. To support the development of novel, longer-acting drugs, a reliable determination of t1/2 is needed together with an improved understanding of the factors that influence it. A model-based meta-analysis was conducted in humans and nonclinical species (rat, rabbit, monkey, and pig) to determine consensus values for the ocular t1/2 of IgG antibodies and Fab fragments. Results from multiple literature and in-house pharmacokinetic studies are presented within a mechanistic framework that assumes diffusion-controlled drug elimination from the vitreous. Our analysis shows, both theoretically and experimentally, that the ocular t1/2 increases in direct proportion to the product of the hydrodynamic radius of the macromolecule (3.0 nm for Fab and 5.0 nm for IgG) and the square of the radius of the vitreous globe, which varies approximately 24-fold from the rat to the human. Interspecies differences in the proportionality factors are observed and discussed in mechanistic terms. In addition, mathematical formulae are presented that allow prediction of the ocular t1/2 for molecules of interest. The utility of these formulae is successfully demonstrated in case studies of aflibercept, brolucizumab, and PEGylated Fabs, where the predicted ocular t1/2 values are found to be in reasonable agreement with the experimental data available for these molecules.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Productos Biológicos/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Inmunoglobulina G/administración & dosificación , Inyecciones Intravítreas/métodos , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Productos Biológicos/farmacocinética , Difusión , Semivida , Haplorrinos , Humanos , Hidrodinámica , Conejos , Ratas , Proteínas Recombinantes de Fusión/farmacocinética , Enfermedades de la Retina/tratamiento farmacológico , Porcinos , Distribución Tisular , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo
5.
Drug Metab Dispos ; 47(12): 1443-1456, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31748266

RESUMEN

For therapeutic proteins, the currently established standard development path generally does not foresee biotransformation studies by default because it is well known that the clearance of therapeutic proteins proceeds via degradation to small peptides and individual amino acids. In contrast to small molecules, there is no general need to identify enzymes involved in biotransformation because this information is not relevant for drug-drug interaction assessment and for understanding the clearance of a therapeutic protein. Nevertheless, there are good reasons to embark on biotransformation studies, especially for complex therapeutic proteins. Typical triggers are unexpected rapid clearance, species differences in clearance not following the typical allometric relationship, a mismatch in the pharmacokinetics/pharmacodynamics (PK/PD) relationship, and the need to understand observed differences between the results of multiple bioanalytical methods (e.g., total vs. target-binding competent antibody concentrations). Early on during compound optimization, knowledge on protein biotransformation may help to design more stable drug candidates with favorable in vivo PK properties. Understanding the biotransformation of a therapeutic protein may also support designing and understanding the bioanalytical assay and ultimately the PK/PD assessment. Especially in cases where biotransformation products are pharmacologically active, quantification and assessment of their contribution to the overall pharmacological effect can be important for establishing a PK/PD relationship and extrapolation to humans. With the increasing number of complex therapeutic protein formats, the need for understanding the biotransformation of therapeutic proteins becomes more urgent. This article provides an overview on biotransformation processes, proteases involved, strategic considerations, regulatory guidelines, literature examples for in vitro and in vivo biotransformation, and technical approaches to study protein biotransformation. SIGNIFICANCE STATEMENT: Understanding the biotransformation of complex therapeutic proteins can be crucial for establishing a pharmacokinetic/pharmacodynamic relationship. This article will highlight scientific, strategic, regulatory, and technological features of protein biotransformation.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Proteínas/farmacocinética , Bibliotecas de Moléculas Pequeñas/farmacocinética , Animales , Biotransformación , Interacciones Farmacológicas , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Proteínas/administración & dosificación , Proteínas/farmacología , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología
6.
J Labelled Comp Radiopharm ; 62(11): 751-757, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31369163

RESUMEN

The number of therapeutic antibodies in research and development as well as their complexity increases from year to year. Novel therapeutic protein formats, such as Fc-fusions, bispecific, or multivalent antibodies, are currently in preclinical and clinical development. Therefore, the need for biodistribution and imaging studies, eg, with radiolabeled proteins are very high. However, the labeling process or the label itself can have an impact on binding to cellular receptors, eg, to neonatal Fc receptor (FcRn), which can lead to altered PK properties compared with the unlabeled antibody. FcRn affinity chromatography allows the assessment of immunoglobulin G (IgG) samples with respect to their pH-dependent FcRn interaction. We analyzed IgGs with different types of labels, namely, direct iodination with 125 I; chelating agents, such as DOTA and DOTAM; and [3 H]propionate. Direct radio-iodination leads to shifts in FcRn column retention time, which might indicate a potentially faster clearance. Furthermore, high conjugation ratios of chelator lower the affinity to FcRn successively and thus may influence the lysosomal degradation of the antibody in endothelial cells. In contrast, IgGs labeled with [3 H]propionate did not show any timeshifts in FcRn affinity chromatography. This article is based on the oral presentation at the IIS 2018 Prague and highlights the importance of an affinity chromatography for characterization of potential changes in affinity to FcRn itself or charge and hydrophobicity.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Receptores Fc/inmunología , Quelantes/química , Halogenación , Marcaje Isotópico , Metales/química , Propionatos/química , Radioisótopos/química , Succinimidas/química
7.
Proc Natl Acad Sci U S A ; 112(19): 5997-6002, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918417

RESUMEN

Here, we investigated the influence of the variable fragment (Fv) of IgG antibodies on the binding to the neonatal Fc receptor (FcRn) as well as on FcRn-dependent pharmacokinetics (PK). FcRn plays a key role in IgG homeostasis, and specific manipulation in the crystallizable fragment (Fc) is known to affect FcRn-dependent PK. Although the influence of the antigen-binding fragment (Fab) on FcRn interactions has been reported, the underlying mechanism is hitherto only poorly understood. Therefore, we analyzed the two IgG1 antibodies, briakinumab and ustekinumab, that have similar Fc parts but different terminal half-lives in human and systematically engineered variants of them with cross-over exchanges and varied charge distribution. Using FcRn affinity chromatography, molecular dynamics simulation, and in vivo PK studies in human FcRn transgenic mice, we provide evidence that the charge distribution on the Fv domain is involved in excessive FcRn binding. This excessive binding prevents efficient FcRn-IgG dissociation at physiological pH, thereby reducing FcRn-dependent terminal half-lives. Furthermore, we observed a linear correlation between FcRn column retention times of the antibody variants and the terminal half-lives in vivo. Taken together, our study contributes to a better understanding of the FcRn-IgG interaction, and it could also provide profound potential in FcRn-dependent antibody engineering of the variable Fab region.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Receptores Fc/química , Animales , Anticuerpos/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales Humanizados/química , Reacciones Antígeno-Anticuerpo , Cromatografía de Afinidad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Ratones , Ratones Transgénicos , Microscopía Confocal , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Multimerización de Proteína , Electricidad Estática , Resonancia por Plasmón de Superficie , Ustekinumab , Microglobulina beta-2/química
8.
Mol Cell Proteomics ; 14(1): 148-61, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378534

RESUMEN

The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG-FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG(1) and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG-FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG-FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG-FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Histocompatibilidad Clase I/química , Inmunoglobulina G/química , Receptores Fc/química , Animales , Células CHO , Cricetulus , Deuterio , Células HEK293 , Humanos , Hidrógeno , Espectrometría de Masas/métodos , Modelos Moleculares
9.
Biotechnol Bioeng ; 112(6): 1187-99, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25545851

RESUMEN

In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Células CHO/enzimología , Células CHO/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , Proteínas Recombinantes/biosíntesis , Tirosina/metabolismo , Animales , Anticuerpos Monoclonales/genética , Dominio Catalítico , Cricetulus , Femenino , Leucina/metabolismo , Modelos Moleculares , Fenilalanina-ARNt Ligasa/química , Conformación Proteica , Proteínas Recombinantes/genética
10.
Int J Mol Sci ; 16(11): 27497-507, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26593903

RESUMEN

TriFabs are IgG-shaped bispecific antibodies (bsAbs) composed of two regular Fab arms fused via flexible linker peptides to one asymmetric third Fab-sized binding module. This third module replaces the IgG Fc region and is composed of the variable region of the heavy chain (VH) fused to CH3 with "knob"-mutations, and the variable region of the light chain (VL) fused to CH3 with matching "holes". The hinge region does not contain disulfides to facilitate antigen access to the third binding site. To compensate for the loss of hinge-disulfides between heavy chains, CH3 knob-hole heterodimers are linked by S354C-Y349C disulphides, and VH and VL of the stem region may be linked via VH44C-VL100C disulphides. TriFabs which bind one antigen bivalent in the same manner as IgGs and the second antigen monovalent "in between" these Fabs can be applied to simultaneously engage two antigens, or for targeted delivery of small and large (fluorescent or cytotoxic) payloads.


Asunto(s)
Anticuerpos Biespecíficos , Fragmentos Fab de Inmunoglobulinas , Inmunoglobulina G , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Afinidad de Anticuerpos/inmunología , Sitios de Unión , Disulfuros/química , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Epítopos/inmunología , Ingeniería Genética , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Temperatura
11.
Proc Natl Acad Sci U S A ; 108(27): 11187-92, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690412

RESUMEN

We describe a generic approach to assemble correctly two heavy and two light chains, derived from two existing antibodies, to form human bivalent bispecific IgG antibodies without use of artificial linkers. Based on the knobs-into-holes technology that enables heterodimerization of the heavy chains, correct association of the light chains and their cognate heavy chains is achieved by exchange of heavy-chain and light-chain domains within the antigen binding fragment (Fab) of one half of the bispecific antibody. This "crossover" retains the antigen-binding affinity but makes the two arms so different that light-chain mispairing can no longer occur. Applying the three possible "CrossMab" formats, we generated bispecific antibodies against angiopoietin-2 (Ang-2) and vascular endothelial growth factor A (VEGF-A) and show that they can be produced by standard techniques, exhibit stabilities comparable to natural antibodies, and bind both targets simultaneously with unaltered affinity. Because of its superior side-product profile, the CrossMab(CH1-CL) was selected for in vivo profiling and showed potent antiangiogenic and antitumoral activity.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Biespecíficos/química , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/química , Angiopoyetina 2/inmunología , Animales , Anticuerpos Biespecíficos/metabolismo , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Inmunoglobulina G/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Modelos Moleculares , Neovascularización Fisiológica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Factor A de Crecimiento Endotelial Vascular/inmunología
12.
MAbs ; 15(1): 2171248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36823021

RESUMEN

Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Anticuerpos Monoclonales
13.
Front Mol Biosci ; 9: 960194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120542

RESUMEN

While antibody-based therapeutics have grown to be one of the major classes of novel medicines, some antibody development candidates face significant challenges regarding expression levels, solubility, as well as stability and aggregation, under physiological and storage conditions. A major determinant of those properties is surface hydrophobicity, which promotes unspecific interactions and has repeatedly proven problematic in the development of novel antibody-based drugs. Multiple computational methods have been devised for in-silico prediction of antibody hydrophobicity, often using hydrophobicity scales to assign values to each amino acid. Those approaches are usually validated by their ability to rank potential therapeutic antibodies in terms of their experimental hydrophobicity. However, there is significant diversity both in the hydrophobicity scales and in the experimental methods, and consequently in the performance of in-silico methods to predict experimental results. In this work, we investigate hydrophobicity of monoclonal antibodies using hydrophobicity scales. We implement several scoring schemes based on the solvent-accessibility and the assigned hydrophobicity values, and compare the different scores and scales based on their ability to predict retention times from hydrophobic interaction chromatography. We provide an overview of the strengths and weaknesses of several commonly employed hydrophobicity scales, thereby improving the understanding of hydrophobicity in antibody development. Furthermore, we test several datasets, both publicly available and proprietary, and find that the diversity of the dataset affects the performance of hydrophobicity scores. We expect that this work will provide valuable guidelines for the optimization of biophysical properties in future drug discovery campaigns.

14.
Front Mol Biosci ; 9: 812750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155578

RESUMEN

As the current biotherapeutic market is dominated by antibodies, the design of different antibody formats, like bispecific antibodies and other new formats, represent a key component in advancing antibody therapy. When designing new formats, a targeted modulation of pairing preferences is key. Several existing approaches are successful, but expanding the repertoire of design possibilities would be desirable. Cognate immunoglobulin G antibodies depend on homodimerization of the fragment crystallizable regions of two identical heavy chains. By modifying the dimeric interface of the third constant domain (CH3-CH3), with different mutations on each domain, the engineered Fc fragments form rather heterodimers than homodimers. The first constant domain (CH1-CL) shares a very similar fold and interdomain orientation with the CH3-CH3 dimer. Thus, numerous well-established design efforts for CH3-CH3 interfaces, have also been applied to CH1-CL dimers to reduce the number of mispairings in the Fabs. Given the high structural similarity of the CH3-CH3 and CH1-CL domains we want to identify additional opportunities in comparing the differences and overlapping interaction profiles. Our vision is to facilitate a toolkit that allows for the interchangeable usage of different design tools from crosslinking the knowledge between these two interface types. As a starting point, here, we use classical molecular dynamics simulations to identify differences of the CH3-CH3 and CH1-CL interfaces and already find unexpected features of these interfaces shedding new light on possible design variations. Apart from identifying clear differences between the similar CH3-CH3 and CH1-CL dimers, we structurally characterize the effects of point-mutations in the CH3-CH3 interface on the respective dynamics and interface interaction patterns. Thus, this study has broad implications in the field of antibody engineering as it provides a structural and mechanistical understanding of antibody interfaces and thereby presents a crucial aspect for the design of bispecific antibodies.

16.
Nat Struct Mol Biol ; 13(1): 44-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16341226

RESUMEN

The noncoding RNA B2 and the RNA aptamer FC bind RNA polymerase (Pol) II and inhibit messenger RNA transcription initiation, but not elongation. We report the crystal structure of FC(*), the central part of FC RNA, bound to Pol II. FC(*) RNA forms a double stem-loop structure in the Pol II active center cleft. B2 RNA may bind similarly, as it competes with FC(*) RNA for Pol II interaction. Both RNA inhibitors apparently prevent the downstream DNA duplex and the template single strand from entering the cleft after DNA melting and thus interfere with open-complex formation. Elongation is not inhibited, as nucleic acids prebound in the cleft would exclude the RNA inhibitors. The structure also indicates that A-form RNA could interact with Pol II similarly to a B-form DNA promoter, as suggested for the bacterial transcription inhibitor 6S RNA.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN no Traducido/genética , Saccharomyces cerevisiae/enzimología , Transcripción Genética/genética , Secuencia de Bases , Cristalografía por Rayos X , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , ARN Mensajero/química , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
17.
MAbs ; 13(1): 1993769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34711143

RESUMEN

A growing body of evidence supports the important role of molecular charge on antibody pharmacokinetics (PK), yet a quantitative description of the effect of charge on systemic and tissue disposition of antibodies is still lacking. Consequently, we have systematically engineered complementarity-determining regions (CDRs) of trastuzumab to create a series of variants with an isoelectric point (pI) range of 6.3-8.9 and a variable region (Fv) charge range of -8.9 to +10.9 (at pH 5.5), and have investigated in vitro and in vivo disposition of these molecules. These monoclonal antibodies (mAbs) exhibited incrementally enhanced binding to cell surfaces and cellular uptake with increased positive charge in antigen-negative cells. After single intravenous dosing in mice, a bell-shaped relationship between systemic exposure and Fv charge was observed, with both extended negative and positive charge patches leading to more rapid nonspecific clearance. Whole-body PK experiments revealed that, although overall exposures of most variants in the tissues were very similar, positive charge of mAbs led to significantly enhanced tissue:plasma concentration ratios for most tissues. In well-perfused organs such as liver, spleen, and kidney, the positive charge variants show superior accumulation. In tissues with continuous capillaries such as fat, muscle, skin, and bone, plasma concentrations governed tissue exposures. The in vitro and in vivo disposition data presented here facilitate better understanding of the impact of charge modifications on antibody PK, and suggest that alteration in the charge may help to improve tissue:plasma concentration ratios for mAbs in certain tissues. The data presented here also paves the way for the development of physiologically based pharmacokinetic models of mAbs that incorporate charge variations.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Animales , Antígenos , Regiones Determinantes de Complementariedad , Punto Isoeléctrico , Ratones
18.
Front Immunol ; 12: 675655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447370

RESUMEN

Antibodies have emerged as one of the fastest growing classes of biotherapeutic proteins. To improve the rational design of antibodies, we investigate the conformational diversity of 16 different germline combinations, which are composed of 4 different kappa light chains paired with 4 different heavy chains. In this study, we systematically show that different heavy and light chain pairings strongly influence the paratope, interdomain interaction patterns and the relative VH-VL interface orientations. We observe changes in conformational diversity and substantial population shifts of the complementarity determining region (CDR) loops, resulting in distinct dominant solution structures and differently favored canonical structures. Additionally, we identify conformational changes in the structural diversity of the CDR-H3 loop upon different heavy and light chain pairings, as well as upon changes in sequence and structure of the neighboring CDR loops, despite having an identical CDR-H3 loop amino acid sequence. These results can also be transferred to all CDR loops and to the relative VH-VL orientation, as certain paratope states favor distinct interface angle distributions. Furthermore, we directly compare the timescales of sidechain rearrangements with the well-described transition kinetics of conformational changes in the backbone of the CDR loops. We show that sidechain flexibilities are strongly affected by distinct heavy and light chain pairings and decipher germline-specific structural features co-determining stability. These findings reveal that all CDR loops are strongly correlated and that distinct heavy and light chain pairings can result in different paratope states in solution, defined by a characteristic combination of CDR loop conformations and VH-VL interface orientations. Thus, these results have broad implications in the field of antibody engineering, as they clearly show the importance of considering paired heavy and light chains to understand the antibody binding site, which is one of the key aspects in the design of therapeutics.


Asunto(s)
Sitios de Unión de Anticuerpos , Células Germinativas/inmunología , Simulación de Dinámica Molecular , Regiones Determinantes de Complementariedad/química , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/química , Región Variable de Inmunoglobulina/química , Conformación Proteica
19.
Nat Commun ; 12(1): 708, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514724

RESUMEN

We report the development of a platform of dual targeting Fab (DutaFab) molecules, which comprise two spatially separated and independent binding sites within the human antibody CDR loops: the so-called H-side paratope encompassing HCDR1, HCDR3 and LCDR2, and the L-side paratope encompassing LCDR1, LCDR3 and HCDR2. Both paratopes can be independently selected and combined into the desired bispecific DutaFabs in a modular manner. X-ray crystal structures illustrate that DutaFabs are able to bind two target molecules simultaneously at the same Fv region comprising a VH-VL heterodimer. In the present study, this platform is applied to generate DutaFabs specific for VEGFA and PDGF-BB, which show high affinities, physico-chemical stability and solubility, as well as superior efficacy over anti-VEGF monotherapy in vivo. These molecules exemplify the usefulness of DutaFabs as a distinct class of antibody therapeutics, which is currently being evaluated in patients.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Neovascularización Coroidal/tratamiento farmacológico , Desarrollo de Medicamentos/métodos , Fragmentos Fab de Inmunoglobulinas/farmacología , Ingeniería de Proteínas , Secuencia de Aminoácidos/genética , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/ultraestructura , Becaplermina/antagonistas & inhibidores , Sitios de Unión de Anticuerpos/genética , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/uso terapéutico , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Concentración 50 Inhibidora , Inyecciones Intravítreas , Masculino , Modelos Moleculares , Prueba de Estudio Conceptual , Conformación Proteica , Ratas , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
20.
Drug Metab Dispos ; 38(1): 84-91, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19850673

RESUMEN

The IgG4 isotype antibody is a potential candidate for immunotherapy when reduced effector functions are desirable. However, antigen binding fragment (Fab) arm exchange leads to functional monovalency with potentially reduced therapeutic efficacy. Mutagenesis studies suggested that the CH3 domain and not the core hinge is dominantly involved in in vivo molecular processing. This work investigated whether stabilization of the core hinge of a therapeutic IgG4 antibody by mutation of Ser228 to Pro (S228P) would be sufficient to prevent in vivo Fab arm exchange. In vitro experiments evaluated the influence of different levels of oxidation-reduction conditions in buffer and serum on Fab arm exchange (swapping) of wild-type (WT) IgG4 and IgG1 and of IgG4 S228P, which included a sterically neutral second mutation (Leu235 replaced by Glu). The objective of single-dose pharmacokinetic experiments in cynomolgus monkeys was to determine whether the mutation reduced IgG4 swapping in vivo. The results indicated that S228P mutation did not completely prevent Fab arm exchange in vitro in buffer under reducing conditions relative to IgG4 WT. The immunoassay findings were confirmed by mass spectrometry measurements. Results of the in vivo studies suggested that the therapeutic IgG4 WT antibody exchanged Fab arms with endogenous cynomolgus monkey IgG4, resulting in bispecific IgG4 antibodies with monovalency for the therapeutic target. In contrast, serum from cynomolgus monkeys dosed with the IgG4 mutant was virtually free of swapped IgG4. In conclusion, the results indicated that IgG4 swapping in vivo was markedly attenuated by S228P mutation.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacocinética , Exones de la Región Bisagra/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina G/uso terapéutico , Proteínas Recombinantes/farmacocinética , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/inmunología , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/metabolismo , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/uso terapéutico , Tampones (Química) , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Macaca fascicularis , Masculino , Ratones , Ligando OX40/inmunología , Oxidación-Reducción , Ratas , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-13/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Sustancias Reductoras/metabolismo , Suero/inmunología , Suero/metabolismo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA