Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 90: 129331, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187252

RESUMEN

The post-transcriptional modifier tRNA-(N1G37) methyltransferase (TrmD) has been proposed to be essential for growth in many Gram-negative and Gram-positive pathogens, however previously reported inhibitors show only weak antibacterial activity. In this work, optimisation of fragment hits resulted in compounds with low nanomolar TrmD inhibition incorporating features designed to enhance bacterial permeability and covering a range of physicochemical space. The resulting lack of significant antibacterial activity suggests that whilst TrmD is highly ligandable, its essentiality and druggability are called into question.


Asunto(s)
Metiltransferasas , ARNt Metiltransferasas , ARNt Metiltransferasas/química , Bacterias , Antibacterianos/farmacología , Antibacterianos/química
2.
Neurobiol Dis ; 160: 105515, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34571136

RESUMEN

Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates. The search for curative therapies has been hampered by the lack of ALS models for use in high-throughput screening. We adapted, optimised, and extensively characterised our previous ALS cellular model for such use. The model demonstrated efficient aggregation of endogenous TDP-43, and concomitant loss of its splicing regulation function. We provided a proof-of-principle for its eventual use in high-throughput screening using compounds of the tricyclic family and showed that recovery of TDP-43 function can be achieved by the enhanced removal of TDP-43 aggregates by these compounds. We observed that the degradation of the aggregates occurs independent of the autophagy pathway beyond autophagosome-lysosome fusion, but requires a functional proteasome pathway. The in vivo translational effect of the cellular model was tested with two of these compounds in a Drosophila model expressing a construct analogous to the cellular model, where thioridazine significantly improved the locomotive defect. Our findings have important implications as thioridazine cleared TDP-43 aggregates and recovered TDP-43 functionality. This study also highlights the importance of a two-stage, in vitro and in vivo model system to cross-check the search for small molecules that can clear TDP-43 aggregates in TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Antagonistas de Dopamina/uso terapéutico , Proteínas de Drosophila/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Tioridazina/uso terapéutico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Antagonistas de Dopamina/farmacología , Drosophila , Humanos , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Tioridazina/farmacología
3.
Br J Cancer ; 122(6): 735-744, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31894140

RESUMEN

Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Medicina de Precisión/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias/metabolismo , Proteómica/métodos , Técnicas de Cultivo de Tejidos
4.
Bioorg Med Chem Lett ; 29(19): 126610, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471167

RESUMEN

Focussed studies on imidazopyridine inhibitors of Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG) have significantly advanced the series towards desirable in vitro property space. LLE-based approaches towards combining improvements in cell potency, key physicochemical parameters and structural novelty are described, and a structure-based design hypothesis relating to substituent regiochemistry has directed efforts towards key examples with well-balanced potency, ADME and kinase selectivity profiles.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Imidazoles/química , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Humanos , Malaria/enzimología , Malaria/parasitología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Plasmodium falciparum/enzimología , Conformación Proteica , Inhibidores de Proteínas Quinasas/química
5.
Bioorg Med Chem Lett ; 29(3): 509-514, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30553738

RESUMEN

Development of a class of bicyclic inhibitors of the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG), starting from known compounds with activity against a related parasite PKG orthologue, is reported. Examination of key sub-structural elements led to new compounds with good levels of inhibitory activity against the recombinant kinase and in vitro activity against the parasite. Key examples were shown to possess encouraging in vitro ADME properties, and computational analysis provided valuable insight into the origins of the observed activity profiles.


Asunto(s)
Antimaláricos/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Imidazoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Imidazoles/síntesis química , Imidazoles/química , Ligandos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 28(19): 3168-3173, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30174152

RESUMEN

A series of trisubstituted thiazoles have been identified as potent inhibitors of Plasmodium falciparum (Pf) cGMP-dependent protein kinase (PfPKG) through template hopping from known Eimeria PKG (EtPKG) inhibitors. The thiazole series has yielded compounds with improved potency, kinase selectivity and good in vitro ADME properties. These compounds could be useful tools in the development of new anti-malarial drugs in the fight against drug resistant malaria.


Asunto(s)
Antimaláricos/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tiazoles/farmacología , Alquilación , Antimaláricos/química , Humanos , Oxidación-Reducción , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tiazoles/química
7.
J Biol Chem ; 291(32): 16840-8, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27231345

RESUMEN

Interleukin-16 (IL-16) is reported to be a chemoattractant cytokine and modulator of T-cell activation, and has been proposed as a ligand for the co-receptor CD4. The secreted active form of IL-16 has been detected at sites of TH1-mediated inflammation, such as those seen in autoimmune diseases, ischemic reperfusion injury (IRI), and tissue transplant rejection. Neutralization of IL-16 recruitment to its receptor, using an anti-IL16 antibody, has been shown to significantly attenuate inflammation and disease pathology in IRI, as well as in some autoimmune diseases. The 14.1 antibody is a monoclonal anti-IL-16 antibody, which when incubated with CD4(+) cells is reported to cause a reduction in the TH1-type inflammatory response. Secreted IL-16 contains a characteristic PDZ domain. PDZ domains are typically characterized by a defined globular structure, along with a peptide-binding site located in a groove between the αB and ßB structural elements and a highly conserved carboxylate-binding loop. In contrast to other reported PDZ domains, the solution structure previously reported for IL-16 reveals a tryptophan residue obscuring the recognition groove. We have solved the structure of the 14.1Fab fragment in complex with IL-16, revealing that binding of the antibody requires a conformational change in the IL-16 PDZ domain. This involves the rotation of the αB-helix, accompanied movement of the peptide groove obscuring tryptophan residue, and consequent opening up of the binding site for interaction. Our study reveals a surprising mechanism of action for the antibody and identifies new opportunities for the development of IL-16-targeted therapeutics, including small molecules that mimic the interaction of the antibody.


Asunto(s)
Anticuerpos Monoclonales/química , Sitios de Unión de Anticuerpos , Fragmentos Fab de Inmunoglobulinas/química , Interleucina-16/química , Cristalografía por Rayos X , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína
8.
Biochem Biophys Res Commun ; 493(1): 444-450, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28882594

RESUMEN

Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K+ channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Activación del Canal Iónico/fisiología , Naftalenos/administración & dosificación , Naftalenos/química , Canales de Potasio de Dominio Poro en Tándem/agonistas , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Porosidad , Potasio/química , Dominios Proteicos , Relación Estructura-Actividad , Terbinafina
9.
PLoS One ; 19(5): e0298864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753630

RESUMEN

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease. Determination of zampilimab half-maximal inhibitory concentration (IC50) against recombinant human TG2 was undertaken using the KxD assay and determination of dissociation constant (Kd) by surface plasmon resonance. Efficacy in vitro was established using a primary human renal epithelial cell model of tubulointerstitial fibrosis, to assess mature deposited extracellular matrix proteins. Proof of concept in vivo used a cynomolgus monkey unilateral ureteral obstruction model of chronic kidney disease. Zampilimab inhibited TG2 crosslinking transamidation activity with an IC50 of 0.25 nM and Kd of <50 pM. In cell culture, zampilimab inhibited extracellular TG2 activity (IC50 119 nM) and dramatically reduced transforming growth factor-ß1-driven accumulation of multiple extracellular matrix proteins including collagens I, III, IV, V, and fibronectin. Intravenous administration of BB7 in rabbits resulted in a 68% reduction in fibrotic index at Day 25 post-unilateral ureteral obstruction. Weekly intravenous administration of zampilimab in cynomolgus monkeys with unilateral ureteral obstruction reduced fibrosis at 4 weeks by >50%, with no safety signals. Our data support the clinical investigation of zampilimab for the treatment of kidney fibrosis.


Asunto(s)
Fibrosis , Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Insuficiencia Renal Crónica , Animales , Humanos , Masculino , Conejos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/inmunología , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Macaca fascicularis , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/metabolismo
10.
Biochem Biophys Res Commun ; 441(2): 463-8, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24383077

RESUMEN

TRESK is a two-pore domain potassium channel. Loss of function mutations have been linked to typical migraine with aura and due to TRESK's expression pattern and role in neuronal excitability it represents a promising therapeutic target. We developed a cell based assay using baculovirus transduced U20S cells to screen for activators of TRESK. Using a thallium flux system to measure TRESK channel activity we identified Cloxyquin as a novel activator. Cloxyquin was shown to have an EC50 of 3.8 µM in the thallium assay and displayed good selectivity against other potassium channels tested. Activity was confirmed using whole cell patch electrophysiology, with Cloxyquin causing a near two fold increase in outward current. The strategy presented here will be used to screen larger compound libraries with the aim of identifying novel chemical series which may be developed into new migraine prophylactics.


Asunto(s)
Cloroquinolinoles/farmacología , Canales de Potasio/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Cloroquinolinoles/química , Humanos , Técnicas de Placa-Clamp , Bibliotecas de Moléculas Pequeñas/química
11.
Bioorg Med Chem Lett ; 23(20): 5578-85, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24007918

RESUMEN

Reactivation of the wild-type p53 pathway is one key goal aimed at developing targeted therapeutics in the cancer research field. Although most p53 protein kinases form 'p53-activating' signals, there are few kinases whose action can contribute to the inhibition of p53, as Casein kinase 1 (CK1) and Checkpoint kinase 1 (CHK1). Here we report on a pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3. These data demonstrate the emerging potential utility of multivalent kinase inhibitors.


Asunto(s)
Quinasa de la Caseína I/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Pirazoles/química , Piridinas/química , Proteína p53 Supresora de Tumor/agonistas , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Células HCT116 , Humanos , Cinética , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Quinasas/metabolismo , Pirazoles/síntesis química , Pirazoles/toxicidad , Piridinas/síntesis química , Piridinas/toxicidad , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteína p53 Supresora de Tumor/metabolismo
12.
Br J Pharmacol ; 179(11): 2697-2712, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34879432

RESUMEN

BACKGROUND AND PURPOSE: Transglutaminase type 2 (TG2) catalyses formation of ε-(γ-glutamyl)-lysine bonds between proteins, including those of the extracellular matrix (ECM). Elevated extracellular TG2 leads to accelerated ECM deposition and reduced clearance that underlies tissue scarring and fibrosis. Many transglutaminase inhibitors exist and allowed for proof-of-concept studies in disease models, but their lack of specificity for the TG2 isoform, and/or poor pharmacokinetic/pharmacodynamic properties have limited their clinical application. We sought to develop a high affinity TG2-specific antibody against extracellular TG2 activity, with characteristics suitable for therapeutic development. EXPERIMENTAL APPROACH: Individual human TG2 domains were used to immunize mice and generate hybridomas. Supernatants were screened for inhibition of recombinant human TG2 activity, with TG2 specificity determined by ELISA. KEY RESULTS: Thirteen TG2-specific, hybridoma supernatants inhibited human transamidation activity. Each hybridoma was cloned and the antibody mapped to an epitope in the TG2 core domain, using phage display panning of a TG2 fragment library. Four distinct inhibitory epitopes were determined. The most effective antibodies (AB1, DC1, and BB7) bound to amino acids 313-327 (catalytic core), with an IC50 of approximately 6-7 nM. The antibodies inhibit TG2 in human cells and block ECM accumulation in a primary human proximal tubular epithelial cell model of fibrosis. Only 7 antibodies inhibited rat TG2, all with higher IC50 values. CONCLUSIONS AND IMPLICATIONS: We identified a preferred inhibitory epitope in human TG2, developed antibodies with required characteristics for clinical development, and established that targeted inhibition of extracellular TG2 transamidation activity is sufficient to modify fibrotic remodelling.


Asunto(s)
Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Animales , Epítopos , Fibrosis , Proteínas de Unión al GTP/metabolismo , Factores Inmunológicos , Ratones , Ratas , Transglutaminasas/química , Transglutaminasas/metabolismo
13.
Drug Discov Today ; 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32920060

RESUMEN

Here, we describe a novel workflow combining informatic and experimental approaches to enable evidence-based prioritising of targets from large sets in parallel. High-throughput protein production and biophysical fragment screening is used to identify those targets that are tractable and ligandable. As proof of concept we have applied this to a set of antibacterial targets comprising 146 essential genes. Of these targets, 51 were selected and 38 delivered results that allowed us to rank them by ligandability. The data obtained against these derisked targets have enabled rapid progression into structurally enabled drug discovery projects, demonstrating the practical value of the fragment-based target screening workflow.

14.
SLAS Discov ; 24(3): 332-345, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30290126

RESUMEN

Building, curating, and maintaining a compound collection is an expensive operation, beyond the scope of most academic organizations. Here we describe the selection criteria used to compile the LifeArc diversity set from commercial suppliers and the process we undertook to generate our representative LifeArc index set. The aim was to avoid a "junk in, junk out" screen collection to increase chemical tractability going forward, while maximizing diversity. Using historical LifeArc screening data, we demonstrate that the index set was predictive of ligandability and that progressable hits could be identified by mining associated clusters within our larger diversity set. Indeed, a higher percentage of index-derived hit clusters were found to have been progressed into hit-to-lead programs, reflecting better drug-likeness. In practice, the library has been shared widely with academic groups and used routinely within LifeArc to assess the ligandability of novel targets. Its small size is well suited to meet the needs of medium-throughput screening in labs with either limited automation, limited precious or expensive reagents, or complex cellular assays. The strategy of screening a small set in combination with rapid hit analog follow-up has demonstrated the utility of finding active clusters for potential development against challenging targets.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Minería de Datos , Bases de Datos de Compuestos Químicos , Estudios Retrospectivos
15.
Nat Commun ; 8(1): 430, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874661

RESUMEN

To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC50 of 160 pM in a PfPKG kinase assay and inhibits P. falciparum blood stage proliferation in vitro with an EC50 of 2.1 nM. Oral dosing renders blood stage parasitaemia undetectable in vivo using a P. falciparum SCID mouse model. The series targets both merozoite egress and erythrocyte invasion, but crucially, also blocks transmission of mature P. falciparum gametocytes to Anopheles stephensi mosquitoes. A co-crystal structure of PvPKG bound to ML10, reveals intimate molecular contacts that explain the high levels of potency and selectivity we have measured. The properties of this series warrant consideration for further development to produce an antimalarial drug.Protein kinases are promising drug targets for treatment of malaria. Here, starting with a medicinal chemistry approach, Baker et al. generate an imidazopyridine that selectively targets Plasmodium falciparum PKG, inhibits blood stage parasite growth in vitro and in mice and blocks transmission to mosquitoes.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Imidazoles/uso terapéutico , Malaria/enzimología , Malaria/transmisión , Piridinas/uso terapéutico , Animales , Línea Celular , Cristalografía por Rayos X , Culicidae , Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Imidazoles/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Ratones Endogámicos BALB C , Modelos Moleculares , Plasmodium chabaudi/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Resultado del Tratamiento
16.
J Biomol Screen ; 20(6): 739-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25656238

RESUMEN

Kir7.1 is an inwardly rectifying potassium channel that has been implicated in controlling the resting membrane potential of the myometrium. Abnormal uterine activity in pregnancy plays an important role in postpartum hemorrhage, and novel therapies for this condition may lie in manipulation of membrane potential. This work presents an assay development and screening strategy for identifying novel inhibitors of Kir7.1. A cell-based automated patch-clamp electrophysiology assay was developed using the IonWorks Quattro (Molecular Devices, Sunnyvale, CA) system, and the iterative optimization is described. In total, 7087 compounds were tested, with a hit rate (>40% inhibition) of 3.09%. During screening, average Z' values of 0.63 ± 0.09 were observed. After chemistry triage, lead compounds were resynthesized and activity confirmed by IC50 determinations. The most potent compound identified (MRT00200769) gave rise to an IC50 of 1.3 µM at Kir7.1. Compounds were assessed for selectivity using the inwardly rectifying potassium channel Kir1.1 (ROMK) and hERG (human Ether-à-go-go Related Gene). Pharmacological characterization of known Kir7.1 inhibitors was also carried out and analogues of VU590 tested to assess selectivity at Kir7.1.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Automatización de Laboratorios , Células CHO , Cricetulus , Fenómenos Electrofisiológicos/efectos de los fármacos , Humanos , Técnicas de Placa-Clamp , Reproducibilidad de los Resultados
18.
EMBO Mol Med ; 6(9): 1161-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056913

RESUMEN

Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post-partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome-wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper-polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long-lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility.


Asunto(s)
Canales de Potasio de Rectificación Interna/fisiología , Contracción Uterina/metabolismo , Animales , Línea Celular , Cricetinae , Cricetulus , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Técnicas In Vitro , Trabajo de Parto/metabolismo , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Embarazo , Contracción Uterina/genética
19.
J Biomol Screen ; 18(5): 610-20, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23427046

RESUMEN

Ribonuclease H2 (RNase H2) is a nuclease that specifically hydrolyzes RNA residues in RNA-DNA hybrids. Mutations in the RNase H2 enzyme complex have been identified in the genetic disorder Aicardi-Goutières syndrome (AGS), which has similarities to the autoimmune disease systemic lupus eryrthrematosis (SLE). The RNase H2 enzyme has also been recently implicated as a key genome surveillance enzyme. Therefore, small-molecule modulators of RNase H2 activity may have utility in therapeutics and as tools to investigate the cellular functions of RNase H2. A fluorescent quench assay, measuring cleavage of an RNA-DNA duplex substrate by recombinant RNase H2, was developed into a high-throughput format and used to screen a 48 560 compound library. A hit validation strategy was subsequently employed, leading to the identification of two novel inhibitor compounds with in vitro nanomolar range inhibition of RNase H2 activity and >100-fold selectivity compared with RNase H type 1. These compounds are the first small-molecule inhibitors of RNase H2 to be reported. They and their derivatives should provide the basis for the development of tool compounds investigating the cellular functions of the RNase H2 enzyme, and, potentially, for pharmacological manipulation of nucleic acid-mediated immune responses.


Asunto(s)
Inhibidores Enzimáticos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Ribonucleasa H/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HeLa , Humanos , Microscopía Fluorescente , Modelos Biológicos , Bibliotecas de Moléculas Pequeñas/análisis , Estudios de Validación como Asunto
20.
J Biomol Screen ; 18(5): 599-609, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23396314

RESUMEN

A variety of G-protein-coupled receptor (GPCR) screening technologies have successfully partnered a number of GPCRs with their cognate ligands. GPCR-mediated ß-arrestin recruitment is now recognized as a distinct intracellular signaling pathway, and ligand-receptor interactions may show a bias toward ß-arrestin over classical GPCR signaling pathways. We hypothesized that the failure to identify native ligands for the remaining orphan GPCRs may be a consequence of biased ß-arrestin signaling. To investigate this, we assembled 10 500 candidate ligands and screened 82 GPCRs using PathHunter ß-arrestin recruitment technology. High-quality screening assays were validated by the inclusion of liganded receptors and the detection and confirmation of these established ligand-receptor pairings. We describe a candidate endogenous orphan GPCR ligand and a number of novel surrogate ligands. However, for the majority of orphan receptors studied, measurement of ß-arrestin recruitment did not lead to the identification of cognate ligands from our screening sets. ß-Arrestin recruitment represents a robust GPCR screening technology, and ligand-biased signaling is emerging as a therapeutically exploitable feature of GPCR biology. The identification of cognate ligands for the orphan GPCRs and the extent to which receptors may exist to preferentially signal through ß-arrestin in response to their native ligand remain to be determined.


Asunto(s)
Arrestinas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Acoplados a Proteínas G/agonistas , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Descubrimiento de Drogas/métodos , Células HEK293 , Humanos , Ligandos , Unión Proteica/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae , Bibliotecas de Moléculas Pequeñas/análisis , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA