Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 298(3): 101721, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151685

RESUMEN

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm-/- mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm-/- mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.


Asunto(s)
Barrera Hematoencefálica , Infarto de la Arteria Cerebral Media , Enfermedades Neuroinflamatorias , Prolil Hidroxilasas , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/enzimología , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Enfermedades Neuroinflamatorias/enzimología , Enfermedades Neuroinflamatorias/metabolismo , Permeabilidad , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Glia ; 70(4): 650-660, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936134

RESUMEN

Previous studies have implicated several brain cell types in schizophrenia (SCZ), but the genetic impact of astrocytes is unknown. Considering their high complexity in humans, astrocytes are likely key determinants of neurodevelopmental diseases, such as SCZ. Human induced pluripotent stem cell (hiPSC)-derived astrocytes differentiated from five monozygotic twin pairs discordant for SCZ and five healthy subjects were studied for alterations related to high genetic risk and clinical manifestation of SCZ in astrocyte transcriptomics, neuron-astrocyte co-cultures, and in humanized mice. We found gene expression and signaling pathway alterations related to synaptic dysfunction, inflammation, and extracellular matrix components in SCZ astrocytes, and demyelination in SCZ astrocyte transplanted mice. While Ingenuity Pathway Analysis identified SCZ disease and synaptic transmission pathway changes in SCZ astrocytes, the most consistent findings were related to collagen and cell adhesion associated pathways. Neuronal responses to glutamate and GABA differed between astrocytes from control persons, affected twins, and their unaffected co-twins and were normalized by clozapine treatment. SCZ astrocyte cell transplantation to the mouse forebrain caused gene expression changes in synaptic dysfunction and inflammation pathways of mouse brain cells and resulted in behavioral changes in cognitive and olfactory functions. Differentially expressed transcriptomes and signaling pathways related to synaptic functions, inflammation, and especially collagen and glycoprotein 6 pathways indicate abnormal extracellular matrix composition in the brain as one of the key characteristics in the etiology of SCZ.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Animales , Astrocitos/metabolismo , Predisposición Genética a la Enfermedad/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Prosencéfalo/metabolismo , Esquizofrenia/genética
3.
Stroke ; 53(10): 3192-3201, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36111544

RESUMEN

BACKGROUND: Species-specific differences in astrocytes and their Alzheimer disease-associated pathology may influence cellular responses to other insults. Herein, human glial chimeric mice were generated to evaluate how Alzheimer disease predisposing genetic background in human astrocytes contributes to behavioral outcome and brain pathology after cortical photothrombotic ischemia. METHODS: Neonatal (P0) immunodeficient mice of both sexes were transplanted with induced pluripotent stem cell-derived astrocyte progenitors from Alzheimer disease patients carrying PSEN1 exon 9 deletion (PSEN1 ΔE9), with isogenic controls, with cells from a healthy donor, or with mouse astrocytes or vehicle. After 14 months, a photothrombotic lesion was produced with Rose Bengal in the motor cortex. Behavior was assessed before ischemia and 1 and 4 weeks after the induction of stroke, followed by tissue perfusion for histology. RESULTS: Open field, cylinder, and grid-walking tests showed a persistent locomotor and sensorimotor impairment after ischemia and female mice had larger infarct sizes; yet, these were not affected by astrocytes with PSEN1 ΔE9 background. Staining for human nuclear antigen confirmed that human cells successfully engrafted throughout the mouse brain. However, only a small number of human cells were positive for astrocytic marker GFAP (glial fibrillary acidic protein), mostly located in the corpus callosum and retaining complex human-specific morphology with longer processes compared with host counterparts. While host astrocytes formed the glial scar, human astrocytes were scattered in small numbers close to the lesion boundary. Aß (beta-amyloid) deposits were not present in PSEN1 ΔE9 astrocyte-transplanted mice. CONCLUSIONS: Transplanted human cells survived and distributed widely in the host brain but had no impact on severity of ischemic damage after cortical photothrombosis in chimeric mice. Only a small number of transplanted human astrocytes acquired GFAP-positive glial phenotype or migrated toward the ischemic lesion forming glial scar. PSEN1 ΔE9 astrocytes did not impair behavioral recovery after experimental stroke.


Asunto(s)
Enfermedad de Alzheimer , Accidente Cerebrovascular , Animales , Antígenos Nucleares/metabolismo , Astrocitos/patología , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Humanos , Isquemia/metabolismo , Masculino , Ratones , Rosa Bengala/metabolismo , Accidente Cerebrovascular/patología
4.
Glia ; 67(1): 146-159, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453390

RESUMEN

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Presenilina-1/metabolismo , Tiazoles/farmacología , Adulto , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Exones/efectos de los fármacos , Exones/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Distribución Aleatoria
5.
NMR Biomed ; 28(2): 231-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25521600

RESUMEN

Transcranial direct current stimulation (tDCS) is used in numerous clinical studies and considered an effective and versatile add-on therapy in neurorehabilitation. To date, however, the underlying neurobiological mechanisms remain elusive. In a rat model of tDCS, we recently observed a polarity-dependent accumulation of endogenous neural stem cells (NSCs) in the stimulated cortex. Based upon these findings, we hypothesized that tDCS may exert a direct migratory effect on endogenous NSCs towards the stimulated cortex. Using noninvasive imaging, we here investigated whether tDCS may also cause a directed migration of engrafted NSCs. Murine NSCs were labeled with superparamagnetic particles of iron oxide (SPIOs) and implanted into rat striatum and corpus callosum. MRI was performed (i) immediately after implantation and (ii) after 10 tDCS sessions of anodal or cathodal polarity. Sham-stimulated rats served as control. Imaging results were validated ex vivo using immunohistochemistry. Overall migratory activity of NSCs almost doubled after anodal tDCS. However, no directed migration within the electric field (i.e. towards or away from the electrode) could be observed. Rather, an undirected outward migration from the center of the graft was detected. Xenograft transplantation induced a neuroinflammatory response that was significantly enhanced following cathodal tDCS. This inflammatory response did not impact negatively on the survival of implanted NSCs. Data suggest that anodal tDCS increases the undirected migratory activity of implanted NSCs. Since the electric field did not guide implanted NSCs over large distances, previously observed polarity-dependent accumulation of endogenous NSCs in the cortex might have originated from local proliferation. Results enhance our understanding of the neurobiological mechanisms underlying tDCS, and may thereby help to develop a targeted and sustainable application of tDCS in clinical practice.


Asunto(s)
Encéfalo/metabolismo , Movimiento Celular , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Estimulación Transcraneal de Corriente Directa , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electrodos , Inmunidad/efectos de los fármacos , Inmunohistoquímica , Hierro/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Imagen por Resonancia Magnética , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Células-Madre Neurales/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Ratas Wistar
6.
Transl Stroke Res ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822994

RESUMEN

Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice. We injected mice with a single intracerebroventricular dose of adeno-associated viral particles encoding VEGF-C before subjecting them to transient middle cerebral artery occlusion (tMCAo). Behavioral testing, Gadolinium (Gd) contrast agent-enhanced magnetic resonance imaging (MRI), and immunohistochemical analysis were performed to define the impact of VEGF-C on the post-stroke outcome. VEGF-C improved stroke-induced behavioral deficits, such as gait disturbances and neurological deficits, ameliorated post-stroke inflammation, and enhanced an alternative glial immune response. Importantly, VEGF-C treatment increased the drainage of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF), as shown by Gd-enhanced MRI. These outcomes were closely associated with an increase in the growth of dLVs around the region where we observed increased vefgc mRNA expression within the brain, including the olfactory bulb, cortex, and cerebellum. Strikingly, VEGF-C-treated ischemic mice exhibited a faster and stronger Gd-signal accumulation in ischemic core area and an enhanced fluid outflow via the cribriform plate. In conclusion, the VEGF-C-induced dLV growth improved the overall outcome post-stroke, indicating that VEGF-C has potential to be included in the treatment strategies of post-ischemic stroke. However, to maximize the therapeutic potential of VEGF-C treatment, further studies on the impact of an enhanced dural lymphatic system at clinically relevant time points are essential.

7.
Sci Rep ; 14(1): 17949, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095453

RESUMEN

Stroke is a leading cause of permanent disability worldwide. Despite intensive research over the last decades, key anti-inflammatory strategies that have proven beneficial in pre-clinical animal models have often failed in translation. The importance of neutrophils as pro- and anti-inflammatory peripheral immune cells has often been overlooked in ischemic stroke. However, neutrophils rapidly infiltrate into the brain parenchyma after stroke and secrete an array of pro-inflammatory factors including reactive oxygen species, proteases, cytokines, and chemokines exacerbating damage. In this study, we demonstrate the neuroprotective and anti-inflammatory effect of benserazide, a clinically used DOPA decarboxylase inhibitor, using both in vitro models of inflammation and in vivo mouse models of focal cerebral ischemia. Benserazide significantly attenuated PMA-induced NETosis in isolated human neutrophils. Furthermore, benserazide was able to protect both SH-SY5Y and iPSC-derived human cortical neurons when challenged with activated neutrophils demonstrating the clinical relevance of this study. Additional in vitro data suggest the ability of benserazide to polarize macrophages towards M2-phenotypes following LPS stimulation. Neuroprotective effects of benserazide are further demonstrated by in vivo studies where peripheral administration of benserazide significantly attenuated neutrophil infiltration into the brain, altered microglia/macrophage phenotypes, and improved the behavioral outcome post-stroke. Overall, our data suggest that benserazide could serve as a drug candidate for the treatment of ischemic stroke. The importance of our results for future clinical trials is further underlined as benserazide has been approved by the European Medicines Agency as a safe and effective treatment in Parkinson's disease when combined with levodopa.


Asunto(s)
Benserazida , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Neutrófilos , Benserazida/farmacología , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Modelos Animales de Enfermedad , Recuperación de la Función/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
8.
Nat Cardiovasc Res ; 3: 474-491, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39087029

RESUMEN

Discovery of meningeal lymphatic vessels (LVs) in the dura mater, also known as dural LVs (dLVs) that depend on vascular endothelial growth factor C expression, has raised interest in their possible involvement in Alzheimer's disease (AD). Here we find that in the APdE9 and 5xFAD mouse models of AD, dural amyloid-ß (Aß) is confined to blood vessels and dLV morphology or function is not altered. The induction of sustained dLV atrophy or hyperplasia in the AD mice by blocking or overexpressing vascular endothelial growth factor C, impaired or improved, respectively, macromolecular cerebrospinal fluid (CSF) drainage to cervical lymph nodes. Yet, sustained manipulation of dLVs did not significantly alter the overall brain Aß plaque load. Moreover, dLV atrophy did not alter the behavioral phenotypes of the AD mice, but it improved CSF-to-blood drainage. Our results indicate that sustained dLV manipulation does not affect Aß deposition in the brain and that compensatory mechanisms promote CSF clearance.

9.
Antioxidants (Basel) ; 11(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35204286

RESUMEN

A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.

10.
Cells ; 11(24)2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36552881

RESUMEN

The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aß42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aß42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aß42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Astrocitos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Aprendizaje Espacial , Envejecimiento
11.
Sci Rep ; 11(1): 3518, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568697

RESUMEN

Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/fisiología , Ferroptosis/fisiología , Glutatión/metabolismo , Hierro/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuroprotección/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/farmacología
12.
Front Immunol ; 11: 559810, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584640

RESUMEN

Rationale: The recently discovered meningeal lymphatic vessels (mLVs) have been proposed to be the missing link between the immune and the central nervous system. The role of mLVs in modulating the neuro-immune response following a traumatic brain injury (TBI), however, has not been analyzed. Parenchymal T lymphocyte infiltration has been previously reported as part of secondary events after TBI, suggestive of an adaptive neuro-immune response. The phenotype of these cells has remained mostly uncharacterized. In this study, we identified subpopulations of T cells infiltrating the perilesional areas 30 days post-injury (an early-chronic time point). Furthermore, we analyzed how the lack of mLVs affects the magnitude and the type of T cell response in the brain after TBI. Methods: TBI was induced in K14-VEGFR3-Ig transgenic (TG) mice or in their littermate controls (WT; wild type), applying a controlled cortical impact (CCI). One month after TBI, T cells were isolated from cortical areas ipsilateral or contralateral to the trauma and from the spleen, then characterized by flow cytometry. Lesion size in each animal was evaluated by MRI. Results: In both WT and TG-CCI mice, we found a prominent T cell infiltration in the brain confined to the perilesional cortex and hippocampus. The majority of infiltrating T cells were cytotoxic CD8+ expressing a CD44hiCD69+ phenotype, suggesting that these are effector resident memory T cells. K14-VEGFR3-Ig mice showed a significant reduction of infiltrating CD4+ T lymphocytes, suggesting that mLVs could be involved in establishing a proper neuro-immune response. Extension of the lesion (measured as lesion volume from MRI) did not differ between the genotypes. Finally, TBI did not relate to alterations in peripheral circulating T cells, as assessed one month after injury. Conclusions: Our results are consistent with the hypothesis that mLVs are involved in the neuro-immune response after TBI. We also defined the resident memory CD8+ T cells as one of the main population activated within the brain after a traumatic injury.


Asunto(s)
Inmunidad Adaptativa , Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Linfático/metabolismo , Sistema Linfático/fisiopatología , Neuroinmunomodulación , Animales , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Sistema Nervioso Central/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Memoria Inmunológica , Inmunofenotipificación , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Transgénicos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia
13.
Neurotherapeutics ; 16(4): 1304-1319, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31372938

RESUMEN

Neuroinflammation is strongly induced by cerebral ischemia. The early phase after the onset of ischemic stroke is characterized by acute neuronal injury, microglial activation, and subsequent infiltration of blood-derived inflammatory cells, including macrophages. Therefore, modulation of the microglial/macrophage responses has increasingly gained interest as a potential therapeutic approach for the ischemic stroke. In our study, we investigated the effects of peripherally administered interleukin 13 (IL-13) in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Systemic administration of IL-13 immediately after the ischemic insult significantly reduced the lesion volume, alleviated the infiltration of CD45+ leukocytes, and promoted the microglia/macrophage alternative activation within the ischemic region, as determined by arginase 1 (Arg1) immunoreactivity at 3 days post-ischemia (dpi). Moreover, IL-13 enhanced the expression of M2a alternative activation markers Arg1 and Ym1 in the peri-ischemic (PI) area, as well as increased plasma IL-6 and IL-10 levels at 3 dpi. Furthermore, IL-13 treatment ameliorated gait disturbances at day 7 and 14 and sensorimotor deficits at day 14 post-ischemia, as analyzed by the CatWalk gait analysis system and adhesive removal test, respectively. Finally, IL-13 treatment decreased neuronal cell death in a coculture model of neuroinflammation with RAW 264.7 macrophages. Taken together, delivery of IL-13 enhances microglial/macrophage anti-inflammatory responses in vivo and in vitro, decreases ischemia-induced brain cell death, and improves sensory and motor functions in the pMCAo mouse model of cerebral ischemia.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Interleucina-13/administración & dosificación , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Administración Intravenosa , Animales , Antiinflamatorios/administración & dosificación , Isquemia Encefálica/diagnóstico por imagen , Células Cultivadas , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Microglía/fisiología , Neuroprotección/fisiología , Accidente Cerebrovascular/diagnóstico por imagen
14.
Front Cell Neurosci ; 13: 461, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708742

RESUMEN

Despite its extensive use in clinical studies, the molecular mechanisms underlying the effects of transcranial direct current stimulation (tDCS) remain to be elucidated. We previously described subacute effects of tDCS on immune- and stem cells in the rat brain. To investigate the more immediate effects of tDCS regulating those cellular responses, we treated rats with a single session of either anodal or cathodal tDCS, and analyzed the gene expression by microarray; sham-stimulated rats served as control. Anodal tDCS increased expression of several genes coding for the major histocompatibility complex I (MHC I), while cathodal tDCS increased the expression of the immunoregulatory protein osteopontin (OPN). We confirmed the effects of gene upregulation by immunohistochemistry at the protein level. Thus, our data show a novel mechanism for the actions of tDCS on immune- and inflammatory processes, providing a target for future therapeutic studies.

15.
Brain Res ; 1581: 80-8, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24905627

RESUMEN

Neuroinflammation with microglia activation (MA) constitutes a key tissue response in acute stroke. Until now, its course in the chronic stage is less well defined. Here, we investigated (i) neuroinflammation in the chronic stage of a rat model of embolic stroke (n=6), and (ii) whether this process can be visualized in vivo by multimodal imaging using Magnetic Resonance Imaging (MRI) and Positron-Emission-Tomography (PET). Imaging data were verified using histology and immunohistochemistry. Repetitive PET studies until week 6 after stroke reveal poststroke inflammation as a dynamic process that involved the infarct, the surrounding tissue and secondary degenerating areas in a complex fashion. At the end, 7 months after stroke, neuroinflammation had almost completely vanished at the lesion side. In contrast, remote from the primarily infarcted areas, a marked T2(*)- hypointensity was detected in the ipsilateral thalamus. In the corresponding area, [(11)C]PK11195-PET detected microglia activation. Immunohistochemistry confirmed activated microglia in the ipsilateral thalamus with signs of extensive phagocytosis and iron deposition around plaque-like amyloid deposition. Neuronal staining (NeuN) revealed pronounced neuronal loss as an endpoint of neurodegeneration in these areas. In conclusion, the data demonstrate not only ongoing thalamic neuroinflammation but also marked neurodegeneration remote from the lesion site in the chronic phase after stroke in rats. Both, neuroinflammation and neurodegeneration were accessible to (immuno-) histochemical methods as well as to in vivo methods using [(11)C]PK11195-PET and T2(*)-weighted MRI. Although the functional roles of these dynamic processes remain to be elucidated, ongoing destruction of neuronal tissue is conceivable. Its inhibition using anti-inflammatory substances may be beneficial in chronic post-stroke conditions, while multimodal imaging can be used to evaluate putative therapeutic effects in vivo.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Amiloide/metabolismo , Animales , Encéfalo/fisiopatología , Radioisótopos de Carbono , Enfermedad Crónica , Modelos Animales de Enfermedad , Inmunohistoquímica , Hierro/metabolismo , Isoquinolinas , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Microglía/patología , Microglía/fisiología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Neuroinmunomodulación/fisiología , Tomografía de Emisión de Positrones , Radiofármacos , Ratas Wistar , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología
16.
Stem Cell Rev Rep ; 10(4): 539-47, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24817672

RESUMEN

The neural cell adhesion molecule (NCAM) plays a role in neurite outgrowth, synaptogenesis, and neuronal differentiation. The NCAM mimetic peptide FG Loop (FGL) promotes neuronal survival in vitro and enhances spatial learning and memory in rats. We here investigated the effects of FGL on neural stem cells (NSC) in vitro and in vivo. In vitro, cell proliferation of primary NSC was assessed after exposure to various concentrations of NCAM or FGL. The differentiation potential of NCAM- or FGL-treated cells was assessed immunocytochemically. To investigate its influence on endogenous NSC in vivo, FGL was injected subcutaneously into adult rats. The effects on NSC mobilization were studied both via non-invasive positron emission tomography (PET) imaging using the tracer [(18)F]-fluoro-L-thymidine ([(18)F]FLT), as well as with immunohistochemistry. Only FGL significantly enhanced NSC proliferation in vitro, with a maximal effect at 10 µg/ml. During differentiation, NCAM promoted neurogenesis, while FGL induced an oligodendroglial phenotype; astrocytic differentiation was neither affected by NCAM or FGL. Those differential effects of NCAM and FGL on differentiation were mediated through different receptors. After FGL-injection in vivo, proliferative activity of NSC in the subventricular zone (SVZ) was increased (compared to placebo-treated animals). Moreover, non-invasive imaging of cell proliferation using [(18)F]FLT-PET supported an FGL-induced mobilization of NSC from both the SVZ and the hippocampus. We conclude that FGL robustly induces NSC mobilization in vitro and in vivo, and supports oligodendroglial differentiation. This capacity renders FGL a promising agent to facilitate remyelinization, which may eventually make FGL a drug candidate for demyelinating neurological disorders.


Asunto(s)
Hipocampo/citología , Imitación Molecular , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/citología , Péptidos/metabolismo , Animales , Western Blotting , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador , Técnicas para Inmunoenzimas , Técnicas In Vitro , Moléculas de Adhesión de Célula Nerviosa/genética , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Péptidos/genética , Tomografía de Emisión de Positrones , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
PLoS One ; 7(8): e43776, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22928032

RESUMEN

Transcranial direct current stimulation (tDCS) is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16) were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min). Bromodeoxyuridine (BrdU) was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC). Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Conductividad Eléctrica , Terapia por Estimulación Eléctrica/métodos , Regeneración , Cráneo , Inmunidad Adaptativa , Animales , Encéfalo/inmunología , Recuento de Células , Terapia por Estimulación Eléctrica/instrumentación , Electrodos , Inflamación/inmunología , Inflamación/patología , Inflamación/fisiopatología , Masculino , Microglía/patología , Células-Madre Neurales/patología , Ratas , Ratas Wistar , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA