Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mol Graph Model ; 130: 108774, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648693

RESUMEN

Water is an indispensable material for human life. Unfortunately, the development of industrial activities has reduced the quality of water resources in the world. Meantime, heavy metals are an important factor in water pollution due to their toxicity. This study highlights the method for the capture of heavy metal ions from wastewater using the procedure of adsorption. The adsorption of toxic heavy metal ions (Pb2+, Hg2+, and Cd2+) on Ca2C as well as Cr2C carbide-nitride MXene monolayers is investigated using the density functional theory. We have carried out the optimization of the considered MXenes by nine DFT functionals: PBE, TPSS, BP86, B3LYP, TPSSh, PBE0, CAM-B3LYP, M11, and LC-WPBE. Our results have shown a good agreement with previously measured electronic properties of the Ca2C and Cr2C MXene layers and the PBE DFT method. The calculated cohesive energy for the Ca2C and Cr2C MXene monolayers are -4.12 eV and -4.20 eV, respectively, which are in agreement with the previous studies. The results reveal that the adsorbed heavy metal ions have a substantial effect on the electronic properties of the considered MXene monolayers. Besides, our calculations show that the metal/MXene structures with higher electron transport rates display higher binding energy as well as charge transfers between the metal and Ca2C and Cr2C layers. Time-dependent density functional analysis also displayed "ligand to metal charge transfer" excitations for the metal/MXene systems. The larger Ebin for the Pb@Ca2C as well as Pb@Cr2C are according to larger redshifts which are expected (Δλ = 45 nm and 71 nm, respectively). Our results might be helpful for future research toward the application of carbide-nitride MXene materials for removing wastewater pollutants.


Asunto(s)
Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Metales Pesados/química , Adsorción , Contaminantes Químicos del Agua/química , Elementos de Transición/química , Teoría Funcional de la Densidad , Iones/química , Purificación del Agua/métodos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA