Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain Behav Immun ; 112: 51-76, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236326

RESUMEN

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Asunto(s)
COVID-19 , Virosis , Ratones , Animales , Células T de Memoria , Enfermedades Neuroinflamatorias , Linfocitos T CD8-positivos , Encéfalo , Memoria Inmunológica
2.
J Immunol ; 205(5): 1228-1238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737149

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Cardiovirus/inmunología , Genes MHC Clase I/inmunología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Blood ; 133(7): 697-709, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30463995

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy is a new pillar in cancer therapeutics; however, its application is limited by the associated toxicities. These include cytokine release syndrome (CRS) and neurotoxicity. Although the IL-6R antagonist tocilizumab is approved for treatment of CRS, there is no approved treatment of neurotoxicity associated with CD19-targeted CAR-T (CART19) cell therapy. Recent data suggest that monocytes and macrophages contribute to the development of CRS and neurotoxicity after CAR-T cell therapy. Therefore, we investigated neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential strategy to manage CART19 cell-associated toxicities. In this study, we show that GM-CSF neutralization with lenzilumab does not inhibit CART19 cell function in vitro or in vivo. Moreover, CART19 cell proliferation was enhanced and durable control of leukemic disease was maintained better in patient-derived xenografts after GM-CSF neutralization with lenzilumab. In a patient acute lymphoblastic leukemia xenograft model of CRS and neuroinflammation (NI), GM-CSF neutralization resulted in a reduction of myeloid and T cell infiltration in the central nervous system and a significant reduction in NI and prevention of CRS. Finally, we generated GM-CSF-deficient CART19 cells through CRISPR/Cas9 disruption of GM-CSF during CAR-T cell manufacturing. These GM-CSFk/o CAR-T cells maintained normal functions and had enhanced antitumor activity in vivo, as well as improved overall survival, compared with CART19 cells. Together, these studies illuminate a novel approach to abrogate NI and CRS through GM-CSF neutralization, which may potentially enhance CAR-T cell function. Phase 2 studies with lenzilumab in combination with CART19 cell therapy are planned.


Asunto(s)
Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Enfermedades del Sistema Inmune/terapia , Inflamación/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , Animales , Anticuerpos Neutralizantes/farmacología , Proliferación Celular , Humanos , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Síndrome , Trasplante Heterólogo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Brain ; 143(12): 3629-3652, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253355

RESUMEN

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Tolerancia Inmunológica , Mediadores de Inflamación/metabolismo , Animales , Células de la Médula Ósea/inmunología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Progresión de la Enfermedad , Femenino , Genes MHC Clase II/genética , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/inmunología , Glioma/metabolismo , Glioma/patología , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Parabiosis , Convulsiones/inducido químicamente , Bazo/inmunología , Bazo/patología , Theilovirus , Timo/patología
5.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847405

RESUMEN

Chimeric antigen receptor T (CART) cell therapy has emerged as a powerful tool for the treatment of multiple types of CD19+ malignancies, which has led to the recent FDA approval of several CD19-targeted CART (CART19) cell therapies. However, CART cell therapy is associated with a unique set of toxicities that carry their own morbidity and mortality. This includes cytokine release syndrome (CRS) and neuroinflammation (NI). The use of preclinical mouse models has been crucial in the research and development of CART technology for assessing both CART efficacy and CART toxicity. The available preclinical models to test this adoptive cellular immunotherapy include syngeneic, xenograft, transgenic, and humanized mouse models. There is no single model that seamlessly mirrors the human immune system, and each model has strengths and weaknesses. This methods paper aims to describe a patient-derived xenograft model using leukemic blasts from patients with acute lymphoblastic leukemia as a strategy to assess CART19-associated toxicities, CRS, and NI. This model has been shown to recapitulate CART19-associated toxicities as well as therapeutic efficacy as seen in the clinic.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Xenoinjertos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inmunoterapia Adoptiva/métodos
6.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167854

RESUMEN

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Rejuvenecimiento , Envejecimiento , Animales , Encéfalo/metabolismo , Senescencia Celular/fisiología , Factores Quimiotácticos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Masculino , Ratones
7.
Front Immunol ; 12: 726421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526998

RESUMEN

CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.


Asunto(s)
Células Presentadoras de Antígenos/patología , Encefalopatías/virología , Encéfalo/patología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/virología , Atrofia , Encéfalo/inmunología , Encéfalo/virología , Encefalopatías/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Macrófagos/patología , Macrófagos/virología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Microglía/virología
8.
Cancer Immunol Res ; 9(9): 1035-1046, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244299

RESUMEN

Although chimeric antigen receptor T (CART)-cell therapy has been successful in treating certain hematologic malignancies, wider adoption of CART-cell therapy is limited because of minimal activity in solid tumors and development of life-threatening toxicities, including cytokine release syndrome (CRS). There is a lack of a robust, clinically relevant imaging platform to monitor in vivo expansion and trafficking to tumor sites. To address this, we utilized the sodium iodide symporter (NIS) as a platform to image and track CART cells. We engineered CD19-directed and B-cell maturation antigen (BCMA)-directed CART cells to express NIS (NIS+CART19 and NIS+BCMA-CART, respectively) and tested the sensitivity of 18F-TFB-PET to detect trafficking and expansion in systemic and localized tumor models and in a CART-cell toxicity model. NIS+CART19 and NIS+BCMA-CART cells were generated through dual transduction with two vectors and demonstrated exclusive 125I uptake in vitro. 18F-TFB-PET detected NIS+CART cells in vivo to a sensitivity level of 40,000 cells. 18F-TFB-PET confirmed NIS+BCMA-CART-cell trafficking to the tumor sites in localized and systemic tumor models. In a xenograft model for CART-cell toxicity, 18F-TFB-PET revealed significant systemic uptake, correlating with CART-cell in vivo expansion, cytokine production, and development of CRS-associated clinical symptoms. NIS provides a sensitive, clinically applicable platform for CART-cell imaging with PET scan. 18F-TFB-PET detected CART-cell trafficking to tumor sites and in vivo expansion, correlating with the development of clinical and laboratory markers of CRS. These studies demonstrate a noninvasive, clinically relevant method to assess CART-cell functions in vivo.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Simportadores/análisis , Animales , Antígenos CD19 , Modelos Animales de Enfermedad , Femenino , Humanos , Células K562 , Masculino , Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Front Oncol ; 8: 320, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30211113

RESUMEN

Glioblastoma (GBM) is a lethal cancer of the central nervous system with a median survival rate of 15 months with treatment. Thus, there is a critical need to develop novel therapies for GBM. Immunotherapy is emerging as a promising therapeutic strategy. However, current therapies for GBM, in particular anti-angiogenic therapies that block vascular endothelial growth factor (VEGF), may have undefined consequences on the efficacy of immunotherapy. While this treatment is primarily prescribed to reduce tumor vascularization, multiple immune cell types also express VEGF receptors, including the most potent antigen-presenting cell, the dendritic cell (DC). Therefore, we assessed the role of anti-VEGF therapy in modifying DC function. We found that VEGF blockade results in a more mature DC phenotype in the brain, as demonstrated by an increase in the expression of the co-stimulatory molecules B7-1, B7-2, and MHC II. Furthermore, we observed reduced levels of the exhaustion markers PD-1 and Tim-3 on brain-infiltrating CD8 T cells, indicating improved functionality. Thus, anti-angiogenic therapy has the potential to be used in conjunction with and enhance immunotherapy for GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA