Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 6(1)2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28344266

RESUMEN

Since its discovery, small interfering RNA (siRNA) has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA) not easily accessed by conventional drugs. Hence, RNA interference (RNAi) therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs). This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF), an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP), showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

2.
Drug Deliv Transl Res ; 3(6)2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24363979

RESUMEN

Breast cancer is a leading cause of cancer deaths among women in the US, with 40 % chance of relapse after treatment. Recent studies outline the role of cancer stem cells (CSCs) in tumor initiation, propagation, and regeneration of cancer. Moreover, it has been established that breast CSCs reside in a quiescent state that makes them more resistant to conventional cancer therapies than bulk cancer cells resulting in tumor relapse. In this study, we establish that CSCs are associated with the overexpression of vasoactive intestinal peptide (VIP) receptors which can be used to actively target these cells. We investigated the potential of using a novel curcumin nanomedicine (C-SSM) surface conjugated with VIP to target and hinder breast cancer with CSCs. Here, we formulated, characterized, and evaluated the feasibility of C-SSM nanomedicine in vitro. We investigated the cytotoxicity of C-SSM on breast cancer cells and CSCs by tumorsphere formation assay. Our results suggest that curcumin can be encapsulated in SSM up to 200 µg/ml with 1 mM lipid concentration. C-SSM nanomedicine is easy to prepare and maintains its original physicochemical properties after lyophilization, with an IC50 that is significantly improved from that of free curcumin (14.2±1.2 vs. 26.1±3.0 µM). Furthermore, C-SSM-VIP resulted in up to 20 % inhibition of tumorsphere formation at a dose of 5 µM. To this end, our findings demonstrate the feasibility of employing our actively targeted nanomedicine as a potential therapy for CSCs-enriched breast cancer.

3.
Methods Enzymol ; 508: 355-75, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22449935

RESUMEN

Inflammation is the body's natural defense mechanism in response to many diseases including infection, cancer, and autoimmune disease. Since the birth of nanotechnology at the end of the twentieth century, scientists have been utilizing the pathophysiologic features of inflammation, mainly leaky vasculature and the overexpression of biomarkers, to design nanomedicines that can deliver drugs with passive and active targeting mechanisms to inflamed tissue sites and achieve effective therapy. Recent advances in nanomedicine research have provided scientists with nanocarriers of many unique and tunable properties to match the specific requirements for the treatment of different inflammatory disease conditions. In this chapter, we describe some of the materials and methods used in the preparation and characterization of these nanomedicines, approaches used for the evaluation of their efficacy on a cellular and organ level, as well as available animal models. We also show how safety and biodistribution studies using anti-inflammatory nanomedicines are conducted in our laboratory for the treatment of rheumatoid arthritis animal models.


Asunto(s)
Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Nanomedicina , Animales , Antiinflamatorios/administración & dosificación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA