Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363760

RESUMEN

The World Health Organization (WHO) recently alerted the emergence of new pathogens causing acute hepatitis in children across several countries. This new situation directs us to the screening of neglected pathogens that cause acute hepatitis. Q-fever is a zoonotic disease, caused by Coxiella burnetii. Although a high seroprevalence of Coxiella burnetii was recorded in animals present in Egypt, Q-fever is still a neglected disease, and the diagnosis of Q-fever is not routinely performed in Egyptian hospitals. In this study, we performed a retrospective assessment for Coxiella burnetii in cases of hepatitis of unknown causes (HUC) enrolled in Assiut University hospitals, in Egypt. Out of 64 samples of HUC, 54 samples were negative for all hepatitis markers, labeled as acute hepatitis of unknown etiology (AHUE), and 10 samples tested positive for adenovirus and Hepatitis E virus (HEV). Q-fever was detected in 3 out of 54 (5.6%) of AHUE, and one sample was confirmed as coinfection of HEV/Q-fever. Jaundice was the most common clinical symptom developed in the patients. In conclusion, Coxiella burnetii was found to be a potential cause of acute hepatitis in HUC. The diagnosis of Q-fever should be considered in acute hepatitis cases in Egyptian hospitals.

2.
Front Microbiol ; 12: 696680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335528

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) causes about 14 million infections with 300,000 deaths and 5,200 stillbirths worldwide annually. Extrahepatic manifestations are reported with HEV infections, such as renal, neurological, and hematological disorders. Recently, we reported that stool-derived HEV-1 replicates efficiently in human monocytes and macrophages in vitro. However, another study reports the presence of viral RNA but no evidence of replication in the PBMCs of acute hepatitis E (AHE) patients. Therefore, the replication of HEV in PBMCs during AHE infection is not completely understood. METHODS: PBMCs were isolated from AHE patients (n = 17) enrolled in Assiut University Hospitals, Egypt. The viral load, positive (+) and negative (-) HEV RNA strands and viral protein were assessed. The gene expression profile of PBMCs from AHE patients was assessed. In addition, the level of cytokines was measured in the plasma of the patients. RESULTS: HEV RNA was detected in the PBMCs of AHE patients. The median HEV load in the PBMCs was 1.34 × 103 IU/ml. A negative HEV RNA strand and HEV open reading frame 2 protein were recorded in 4/17 (23.5%) of the PBMCs. Upregulation of inflammatory transcripts and increased plasma cytokines were recorded in the AHE patients compared with healthy individuals with significantly elevated transcripts and plasma cytokines in the AHE with detectable (+) and (-) RNA strands compared with the AHE with the detectable (+) RNA strand only. There was no significant difference in terms of age, sex, and liver function tests between AHE patients with detectable (+) and (-) RNA strands in the PBMCs and AHE patients with the (+) RNA strand only. CONCLUSION: Our study shows evidence for in vivo HEV persistence and replication in the PBMCs of AHE patients. The replication of HEV in the PBMCs was associated with an enhanced immune response, which could affect the pathogenesis of HEV.

3.
Virulence ; 12(1): 1334-1344, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34002677

RESUMEN

HEV-Ag ELISA assay is a reliable diagnostic test in resource-limited areas. HEV genotype 1 (HEV-1) infections are either self-limited or progress to fulminant hepatic failure (FHF) and death if anti-HEV therapy is delayed. Limited data is available about the diagnostic utility of HEV Ag on HEV-1 infections. Herein wWe aimed to study the kinetics of HEV Ag during HEV-1 infections at different stages, i.e., acute HEV infection, recovery, and progression to FHF. Also, we evaluated the diagnostic utility of this marker to predict the outcomes of HEV-1 infections. Plasma of acute hepatitis E (AHE) patients were assessed for HEV RNA by RT-qPCR, HEV Ag, and anti-HEV IgM by ELISA. The kinetics of HEV Ag was monitored at different time points; acute phase of infection, recovery, FHF stage, and post-recovery. Our results showed that the level of HEV Ag was elevated in AHE patients with a significantly higher level in FHF patients than recovered patients. We identified a plasma HEV Ag threshold that can differentiate between self-limiting infection and FHF progression with 100% sensitivity and 88.89% specificity. HEV Ag and HEV RNA have similar kinetics during the acute phase and self-limiting infection. In the FHF stage, HEV Ag and anti-HEV IgM have similar patterns of kinetics which could be the cause of liver damage. In conclusion, the HEV Ag assay can be used as a biomarker for predicting the consequences of HEV-1 infections which could be diagnostically useful for taking the appropriate measures to reduce the complications, especially for high-risk groups.


Asunto(s)
Antígenos de la Hepatitis/análisis , Virus de la Hepatitis E , Hepatitis E , Biomarcadores , Genotipo , Anticuerpos Antihepatitis , Hepatitis E/diagnóstico , Virus de la Hepatitis E/genética , Humanos , Inmunoglobulina M , Cinética , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA