Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Infect Dis ; 211(3): 352-60, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25165161

RESUMEN

BACKGROUND: Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. METHODS: Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). RESULTS: Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)--numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. CONCLUSIONS: LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. CLINICAL TRIALS REGISTRATION: NCT01246999.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Niño , Preescolar , Femenino , Pruebas de Inhibición de Hemaglutinación/métodos , Humanos , Inmunoglobulina A/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Masculino , Vacunas Virales/inmunología
2.
Heliyon ; 9(5): e15651, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37144181

RESUMEN

We applied Surface Plasmon Resonance (SPR) technology to develop a method for potency screening and quantification of anti-influenza antibodies in minimally processed human plasma samples and intravenous immunoglobulin (IGIV) products. We found that specific antibodies in human plasma or IGIV capable of inhibiting binding of influenza hemagglutinin to receptor-analogous glycans do so in concentration-dependent manner. We ranked the inhibitory activity of plasma samples from multiple donors and found a good correlation (r = 0.87) of SPR assay measurements and conventional hemagglutination inhibition (HAI) assay results. This method was also applied to screen for specific anti-influenza antibodies in IGIV lots manufactured pre- and post-2009 H1N1 pandemic. The SPR method was also applied to study binding inhibition of the intact A/California/04/2009 H1N1 and B/Victoria/504/2000 influenza viruses to α2,6 or α2,3-linked synthetic glycans. In contrast to recombinant H1 hemagglutinin, which was found to interact primarily with α2,6-linked terminal sialic acids, intact H1N1 or influenza B virus recognized both types of receptor analogs with different observed dissociation rates and the inhibitory activity of plasma antibodies was dependent on the type of sialic acid link. The SPR method can provide a high-throughput, time-saving and semi-automated alternative to conventional assays such as HAI or microneutralization in situations where screening of large numbers of plasma donations to identify high titer units is needed to product highly potent immunoglobulins.

3.
Viruses ; 15(8)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37632039

RESUMEN

The recent global COVID-19 pandemic caused by SARS-CoV-2 lasted for over three years. A key measure in combatting this pandemic involved the measurement of the monoclonal antibody (mAb)-mediated inhibition of binding between the spike receptor-binding domain (RBD) and hACE2 receptor. Potency assessments of therapeutic anti-SARS-CoV-2 mAbs typically include binding or cell-based neutralization assays. We assessed the inhibitory activity of five anti-SARS-CoV-2 mAbs using ELISA, surface plasmon resonance (SPR), and four cell-based neutralization assays using different pseudovirus particles and 293T or A549 cells expressing hACE2 with or without TMPRSS2. We assessed the interchangeability between cell-based and binding assays by applying the Bland-Altman method under certain assumptions. Our data demonstrated that the IC50 [nM] values determined by eight neutralization assays are independent of the cell line, presence of TMPRSS2 enzyme on the cell surface, and pseudovirus backbone used. Moreover, the Bland-Altman analysis showed that the IC50 [nM] and KD [nM] values determined by neutralization/ELISA or by SPR are equivalent and that the anti-spike mAb activity can be attributed to one variable directly related to its tertiary conformational structure conformation, rate dissociation constant Koff. This parameter is independent from the concentrations of the components of the mAb:RBD:hACE2 complexes and can be used for a comparison between the activities of the different mAbs.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Células A549 , Anticuerpos Monoclonales , Anticuerpos Antivirales
4.
J Virol ; 84(17): 8607-16, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20592084

RESUMEN

The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to alpha2,3 together with decreasing binding to alpha2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals.


Asunto(s)
Modelos Animales de Enfermedad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Adaptación Fisiológica , Animales , Pollos , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Gripe Humana/mortalidad , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Virales/genética , Virulencia
5.
J Virol ; 82(22): 11374-82, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18786988

RESUMEN

Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 mug of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Animales Domésticos , Anticuerpos Antivirales/sangre , Asia , Cloaca/virología , Patos , Pruebas de Inhibición de Hemaglutinación , Aceites/administración & dosificación , Análisis de Supervivencia , Tráquea/virología , Vacunas de Productos Inactivados/inmunología , Esparcimiento de Virus
6.
Arch Virol ; 154(6): 939-44, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19458904

RESUMEN

Despite the extensive use of poultry vaccines to control the spread of H5N1 influenza in poultry, H5N1 outbreaks continue to occur in domestic birds. Our objective was to determine the duration of the neutralizing antibody response under field conditions after vaccination with a laboratory-tested inactivated reverse genetics-derived H5N3 vaccine. H5N3 hemagglutination inhibition (HI) and virus neutralization (VN) antibodies were observed 40 weeks after vaccination of chickens with two doses and vaccination of ducks with one dose. Cross-clade antibodies to an H5N1 virus (A/chicken/Laos/A0464/07) antigenically distinct from the vaccine strain were detected in ducks after a single vaccination and were sustained for 28 weeks (for 40 weeks when a boost vaccination was given). Our results indicate that this inactivated H5N3 vaccine can produce long-lasting antibodies to homologous and heterologous viruses under field conditions.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Animales , Anticuerpos Antivirales/sangre , Pollos , Reacciones Cruzadas , Patos , Pruebas de Inhibición de Hemaglutinación , Laos , Pruebas de Neutralización , Vacunas de Productos Inactivados/inmunología
7.
PLoS One ; 13(4): e0195525, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29630683

RESUMEN

We applied an in vitro selection approach using two different plant lectins that bind to α2,3- or α2,6-linked sialic acids to determine which genetic changes of the A/California/04/09 (H1N1) virus alter hemagglutinin (HA) receptor binding toward α2,3- or α2,6-linked glycans. Consecutive passages of the A/California/04/09 virus with or without lectins in human lung epithelial Calu-3 cells led to development of three HA1 amino acid substitutions, N129D, G155E, and S183P, and one mutation in the neuraminidase (NA), G201E. The S183P mutation significantly increased binding to several α2,6 SA-linked glycans, including YDS, 6'SL(N), and 6-Su-6'SLN, compared to the wild-type virus (↑3.6-fold, P < 0.05). Two other HA1 mutations, N129D and G155E, were sufficient to significantly increase binding to α2,6-linked glycans, 6'SLN and 6-Su-6'SLN, compared to S183P (↑4.1-fold, P < 0.05). These HA1 mutations also increased binding affinity for 3'SLN glycan compared to the wild-type virus as measured by Biacore surface plasmon resonance method. In addition, the HA1 N129D and HA1 G155E substitutions were identified as antigenic mutations. Furthermore, the G201E mutation in NA reduced the NA enzyme activity (↓2.3-fold). These findings demonstrate that the A/California/04/09 (H1N1) virus can acquire enhanced receptor affinity for both α2,3- and α2,6-linked sialic receptors under lectin-induced selective pressure. Such changes in binding affinity are conferred by selection of beneficial HA1 mutations that affect receptor specificity, antigenicity, and/or functional compatibility with the NA protein.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Neuraminidasa/genética , Neuraminidasa/metabolismo , Lectinas de Plantas/metabolismo , Receptores Virales/fisiología , Sustitución de Aminoácidos , Animales , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/metabolismo , Línea Celular , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Células de Riñón Canino Madin Darby , Neuraminidasa/química , Polisacáridos/química , Polisacáridos/genética , Polisacáridos/metabolismo , Unión Proteica , Selección Genética , Resonancia por Plasmón de Superficie
8.
Vaccine ; 27(31): 4187-95, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19406182

RESUMEN

The rapid evolution, genetic diversity, broad host range, and increasing human infection with avian influenza A (H5N1) viruses highlight the need for an efficacious cross-clade vaccine. Using the ferret model, we compared induction of cross-reactive immunity and protective efficacy of three single-clade H5N1 vaccines and a novel multiple-clade H5N1 vaccine, with and without MF59 adjuvant. Reverse genetics (rg) was used to generate vaccine viruses containing the hemagglutinin (HA) and neuraminidase genes of wild-type H5N1 viruses. Ferrets received two doses of inactivated whole-virus vaccine separated by 3 weeks. Single-clade vaccines (7.5 microg HA per dose) included rg-A/Vietnam/1203/04 (clade 1), rg-A/Hong Kong/213/03 (clade 1), and rg-A/Japanese White Eye/Hong Kong/1038/06 (clade 2.3). The multiple-clade vaccine contained 3.75 microg HA per dose of each single-clade vaccine and of rg-A/Whooper Swan/Mongolia/244/05 (clade 2.2). Two doses of vaccine were required to substantially increase anti-HA and virus neutralizing antibody titers to H5N1 viruses. MF59 adjuvant enhanced induction of clade-specific and cross-clade serum antibody responses, reduced frequency of infection (as determined by upper respiratory tract virus shedding and seroconversion data), and eliminated disease signs. The rg-A/Hong Kong/213/03 vaccine induced the highest antibody titers to homologous and heterologous H5N1 viruses, while rg-A/Japanese White Eye/Hong Kong/1038/06 vaccine induced the lowest. The multiple-clade vaccine was broadly immunogenic against clade 1 and 2 viruses. The rg-A/Vietnam/1203/04 vaccine (the currently stockpiled H5N1 vaccine) most effectively reduced upper respiratory tract virus shedding after challenge with clade 1 and 2 viruses. Importantly, all vaccines protected against lethal challenge with A/Vietnam/1203/04 virus and provided cross-clade protection.


Asunto(s)
Reacciones Cruzadas , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antivirales/sangre , Femenino , Hurones , Humanos , Inmunización Secundaria , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Masculino , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/prevención & control , Polisorbatos/administración & dosificación , Polisorbatos/farmacología , Escualeno/administración & dosificación , Escualeno/farmacología , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología , Esparcimiento de Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA