Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neural Transm (Vienna) ; 130(8): 1039-1048, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36401749

RESUMEN

Neuroinflammation has been proposed to impact symptomatology in patients with schizophrenia spectrum disorders. While previous studies have shown equivocal effects of treatments with add-on anti-inflammatory drugs such as Aspirin, N-acetylcysteine and Celecoxib, none have used a subset of prospectively recruited patients exhibiting an inflammatory profile. The aim of the study is to evaluate the efficacy and safety as well as the cost-effectiveness of a treatment with 400 mg Celecoxib added to an ongoing antipsychotic treatment in patients with schizophrenia spectrum disorders exhibiting an inflammatory profile. The "Add-on Celecoxib treatment in patients with schizophrenia spectrum disorders and inflammatory cytokine profile trial (TargetFlame)" is a multicentre randomized, placebo-controlled phase III investigator-initiated clinical trial with the following two arms: patients exhibiting an inflammatory profile receiving either add-on Celecoxib 400 mg/day or add-on placebo. A total of 199 patients will be assessed for eligibility by measuring blood levels of three pro-inflammatory cytokines, and 109 patients with an inflammatory profile, i.e. inflamed, will be randomized, treated for 8 weeks and followed-up for additional four months. The primary endpoint will be changes in symptom severity as assessed by total Positive and Negative Syndrome Scale (PANSS) score changes from baseline to week 8. Secondary endpoints include various other measures of psychopathology and safety. Additional health economic analyses will be performed. TargetFlame is the first study aimed at evaluating the efficacy, safety and cost-effectiveness of the antiphlogistic agent Celecoxib in a subset of patients with schizophrenia spectrum disorders exhibiting an inflammatory profile. With TargetFlame, we intended to investigate a novel precision medicine approach towards anti-inflammatory antipsychotic treatment augmentation using drug repurposing. Clinical trial registration: http://www.drks.de/DRKS00029044 and https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00029044.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Celecoxib/uso terapéutico , Antipsicóticos/efectos adversos , Esquizofrenia/tratamiento farmacológico , Método Doble Ciego , Resultado del Tratamiento , Citocinas
2.
Environ Res ; 229: 115865, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062478

RESUMEN

Childhood internalizing disorders refer to inwardly focused negative behaviours such as anxiety, depression, and somatic complains. Interactions between psychosocial, genetic, and environmental risk factors adversely impact neurodevelopment and can contribute to internalizing disorders. While prenatal exposure to single endocrine disruptors (EDs) is associated with internalizing behaviours in infants, the associations with prenatal exposure to EDs in mixture remain poorly addressed. In addition, the biological mediators of EDs in mixture effects on internalizing behaviours remain unexplored. EDs do not only interfere with endocrine function, but also with immune function and inflammatory processes. Based on this body of evidence, we hypothetised that inflammation at birth is a plausible biological pathway through which prenatal exposure to EDs in mixture could operate to influence offspring internalizing behaviours. Based on the EDEN birth cohort, we investigated whether exposure to a mixture of EDs increased the odds of internalizing disorders in 459 boy infants at age 3, and whether the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α measured at birth were mediators of this effect. To determine both the joint and individual associations of prenatal exposure to EDs with infant internalizing behaviours and the possible mediating role of cytokines, we used the counterfactual hierarchical Bayesian Kernel Machine Regression (BKMR) regression-causal mediation analysis. We show that prenatal exposure to a complex mixture of EDs has limited effects on internalizing behaviours in boys at age 3. We also show that IL-1ß, IL-6, and TNF-α are unlikely mediators or suppressors of ED mixture effects on internalizing behaviours in boys at age 3. Further studies on larger cohorts are warranted to refine the deleterious effects of EDs in mixtures on internalizing behaviours and identify possible mediating pathways.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Efectos Tardíos de la Exposición Prenatal , Masculino , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Niño , Preescolar , Parabenos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Fenoles/toxicidad , Citocinas , Factor de Necrosis Tumoral alfa , Teorema de Bayes , Interleucina-6 , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad
3.
Brain Behav Immun ; 87: 377-387, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31923553

RESUMEN

Nearly 10% of 5-year-old children experience social, emotional or behavioral problems and are at increased risk of developing mental disorders later in life. While animal and human studies have demonstrated that cytokines can regulate brain functions, it is unclear whether individual cytokines are associated with specific behavioral dimensions in population-based pediatric samples. Here, we used data and biological samples from 786 mother-child pairs participating to the French national mother-child cohort EDEN. At the age of 5, children were assessed for behavioral difficulties using the Strengths and Difficulties Questionnaire (SDQ) and had their serum collected. Serum samples were analyzed for levels of well-characterized effector or regulatory cytokines. We then used a penalized logistic regression method (Elastic Net), to investigate associations between serum levels of cytokines and each of the five SDQ-assessed behavioral dimensions after adjustment for relevant covariates and confounders, including psychosocial variables. We found that interleukin (IL)-6, IL-7, and IL-15 were associated with increased odds of problems in prosocial behavior, emotions, and peer relationships, respectively. In contrast, eight cytokines were associated with decreased odds of problems in one dimension: IL-8, IL-10, and IL-17A with emotional problems, Tumor Necrosis Factor (TNF)-α with conduct problems, C-C motif chemokine Ligand (CCL)2 with hyperactivity/inattention, C-X-C motif chemokine Ligand (CXCL)10 with peer problems, and CCL3 and IL-16 with abnormal prosocial behavior. Without implying causation, these associations support the notion that cytokines regulate brain functions and behavior and provide a rationale for launching longitudinal studies.


Asunto(s)
Citocinas/sangre , Trastornos Mentales , Problema de Conducta , Preescolar , Estudios Transversales , Emociones , Humanos , Encuestas y Cuestionarios
4.
BMC Neurol ; 20(1): 138, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295518

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and the most commonly identified monogenic cause of autism. Recent studies have shown that long-term pathological consequences of FXS are not solely confined to the central nervous system (CNS) but rather extend to other physiological dysfunctions in peripheral organs. To gain insights into possible immune dysfunctions in FXS, we profiled a large panel of immune-related biomarkers in the serum of FXS patients and healthy controls. METHODS: We have used a sensitive and robust Electro Chemi Luminescence (ECL)-based immunoassay to measure the levels of 52 cytokines in the serum of n = 25 FXS patients and n = 29 healthy controls. We then used univariate statistics and multivariate analysis, as well as an advanced unsupervised clustering method, to identify combinations of immune-related biomarkers that could discriminate FXS patients from healthy individuals. RESULTS: While the majority of the tested cytokines were present at similar levels in FXS patients and healthy individuals, nine chemokines, CCL2, CCL3, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26 and CXCL10, were present at much lower levels in FXS patients. Using robust regression, we show that six of these biomarkers (CCL2, CCL3, CCL11, CCL22, CCL26 and CXCL10) were negatively associated with FXS diagnosis. Finally, applying the K-sparse unsupervised clustering method to the biomarker dataset allowed for the identification of two subsets of individuals, which essentially matched the FXS and healthy control categories. CONCLUSIONS: Our data show that FXS patients exhibit reduced serum levels of several chemokines and may therefore exhibit impaired immune responses. The present study also highlights the power of unsupervised clustering methods to identify combinations of biomarkers for diagnosis and prognosis in medicine.


Asunto(s)
Quimiocinas/sangre , Citocinas/sangre , Síndrome del Cromosoma X Frágil/sangre , Adolescente , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Pronóstico , Adulto Joven
5.
Ann Hum Biol ; 47(2): 159-165, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32338077

RESUMEN

Background: Leptin is potentially involved in the correction of early postnatal growth of infants having deviated from their genetic trajectory in utero.Aim: To analyse the potential mediating role of cord blood leptin level in the association between neonatal anthropometry and early postnatal growth in the mother-child EDEN cohort.Subjects and methods: We included term newborns with information on leptin, birth weight and length, and weight and length SD-score changes over the first 2 months. The Baron and Kenny method was used to quantify the mediation contribution of leptin in the association between neonatal anthropometry and postnatal growth, considering several confounders. Analyses were stratified to consider sexual dimorphism.Results: A 1 SD higher birth weight was associated with a lower 2-months weight variation of 0.27 (0.18; 0.36) SD and a 0.16 (0.06; 0.26) SD, in boys and girls, respectively. Leptin explained 20% and 25% of these associations, respectively. Leptin did not mediate the association between birth length and birth-to-2 months length variation.Conclusion: Our results suggest that cord blood leptin may not be involved in the negative association between birth length and postnatal length growth but may play a modest mediating role in early postnatal catch-up or catch-down in weight.


Asunto(s)
Tamaño Corporal , Desarrollo Infantil , Sangre Fetal/química , Recién Nacido/fisiología , Leptina/sangre , Preescolar , Estudios de Cohortes , Femenino , Francia , Humanos , Lactante , Recién Nacido/crecimiento & desarrollo , Masculino
6.
Stem Cells ; 35(2): 374-385, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27664080

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, ßIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Forma de la Célula/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Cinética , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética
7.
Nucleic Acids Res ; 43(17): 8540-50, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26250109

RESUMEN

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.


Asunto(s)
Cerebelo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/química
8.
PLoS Genet ; 9(3): e1003367, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555284

RESUMEN

The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA-binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21--a regulator of cell-cycle progression--in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3' untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Distrofias Musculares , Mioblastos , Proteínas de Unión al ARN/genética , Animales , Ciclo Celular/genética , Diferenciación Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
Brain Behav Immun Health ; 38: 100768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38586283

RESUMEN

There is growing evidence that in utero imbalance immune activity plays a role in the development of neurodevelopmental and psychiatric disorders in children. Mood dysregulation (MD) is a debilitating transnosographic syndrome whose underlying pathophysiological mechanisms could be revealed by studying its biomarkers using the Research Domain Criteria (RDoC) model. Our aim was to study the association between the network of cord serum cytokines, and mood dysregulation trajectories in offsprings between 3 and 8 years of age. We used the data of a study nested in the French birth cohort EDEN that took place from 2003 to 2014 and followed mother-child dyads from the second trimester of pregnancy until the children were 8 years of age. The 2002 mother-child dyads were recruited from the general population through their pregnancy follow-up in two French university hospitals. 871 of them were included in the nested cohort and cord serum cytokine levels were measured at birth. Children's mood dysregulation symptoms were assessed with the Strengths and Difficulties Questionnaire Dysregulation Profile at the ages 3, 5 and 8 years in order to model their mood dysregulation trajectories. Out of the 871 participating dyads, 53% of the children were male. 2.1% of the children presented a high mood dysregulation trajectory whereas the others were considered as physiological variations. We found a significant negative association between TNF-α cord serum levels and a high mood dysregulation trajectory when considering confounding factors such as maternal depression during pregnancy (adjusted Odds Ratio (aOR) = 0.35, 95% Confidence Interval (CI) [0.18-0.67]). Immune imbalance at birth could play a role in the onset of mood dysregulation symptoms. Our findings throw new light on putative immune mechanisms implicated in the development of mood dysregulation and should lead to future animal and epidemiological studies.

10.
Eur Neuropsychopharmacol ; 54: 126-135, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607723

RESUMEN

Most researchers working in the field of immunopsychiatry would agree with the statement that "severe psychiatric disorders are associated with inflammation and more broadly with changes in immune variables". However, as many other fields in biology and medicine, immunopsychiatry suffers from a replication crisis characterized by lack of reproducibility. In this paper, we will comment on four types of immune variables which have been studied in psychiatric disorders: Acute Phase Proteins (AAPs), cytokines, lipid mediators of inflammation and immune cell parameters, and discuss the rationale for looking at them in blood. We will briefly describe the analytical methods that are currently used to measure the levels of these biomarkers and comment on overlooked analytical and statistical methodological issues that may explain some of the conflicting data reported in the literature. Lastly, we will briefly summarize what cross-sectional, longitudinal and mendelian randomization studies have brought to our understanding of schizophrenia (SZ).


Asunto(s)
Psiquiatría , Esquizofrenia , Estudios Transversales , Humanos , Inflamación , Reproducibilidad de los Resultados
11.
Brain Behav Immun Health ; 21: 100429, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35243407

RESUMEN

Sleep is essential for optimal child development and health during the life course. However, sleep disturbances are common in early childhood and increase the risk of cognitive, metabolic and inflammatory disorders throughout life. Sleep and immunity are mutually linked, and cytokines secreted by immune cells could mediate this interaction. The sleep modulation of cytokines has been studied mostly in adults and adolescents; few studies have focused on school-aged children and none on preschoolers. We hypothesized that night sleep duration affects cytokine levels in preschoolers. In a sample of 687 children from the EDEN French birth cohort, we studied the associations between night sleep duration trajectories from age to 2-5 years old and serum concentrations of four cytokines (Tumor necrosis factor α [TNF-α], Interleukin 6 [IL-6], IL-10, Interferon γ [IFN)-γ] at age 5, adjusting for relevant covariates. As compared with the reference trajectory (≈11h30/night sleep, 37.4% of children), a shorter sleep duration trajectory (<10 â€‹h/night, 4.5% of children), and changing sleep duration trajectory (≥11h30/night then 10h30/night, 5.6% of children) were associated with higher serum levels of IL-6 and TNF-α, respectively at age 5. We found no associations between sleep duration trajectories and IL-10 or IFN-γ levels. This first longitudinal study among children aged 2-5 years old suggests an impact of sleep duration on immune activity in early childhood. Our study warrants replication studies in larger cohorts to further explore whether and how immune activity interacts with sleep trajectories to enhance susceptibility to adverse health conditions.

12.
Pediatr Obes ; 17(11): e12955, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35747935

RESUMEN

BACKGROUND: Cord blood leptin is an indicator of neonatal fat mass and could shape postnatal adiposity trajectories. Investigating genetic polymorphisms of the leptin receptor gene (LEPR) could help understand the mechanisms involved. OBJECTIVES: We aimed to investigate the association of cord blood leptin level and the LEPR rs9436303 polymorphism, with body mass index (BMI) at adiposity peak (AP) and age at adiposity rebound (AR). METHODS: In the EDEN cohort, BMI at AP and age at AR were estimated with polynomial mixed models, for 1713 and 1415 children, respectively. Multivariable linear regression models allowed for examining the associations of cord blood leptin level and LEPR rs9436303 genotype with BMI at AP and age at AR adjusted for potential confounders including birth size groups. We also tested interactions between cord blood leptin level and rs9436303 genotype. RESULTS: Increased leptin level was associated with reduced BMI at AP and early age at AR (comparing the highest quintile of leptin level to the others). Rs9436303 G-allele carriage was associated with increased BMI at AP and later age at AR but did not modulate the association with leptin level. CONCLUSION: These results illustrate the role of early life body composition and the intrauterine environment in the programming of adiposity in childhood.


Asunto(s)
Índice de Masa Corporal , Sangre Fetal , Leptina , Receptores de Leptina , Adiposidad/genética , Humanos , Recién Nacido , Leptina/sangre , Obesidad/epidemiología , Obesidad/genética , Receptores de Leptina/genética
13.
Biol Psychiatry ; 89(6): 541-549, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33349450

RESUMEN

BACKGROUND: Recent research suggests that immune dysregulation in pregnancy could be a risk factor for anxiety and depression symptoms in offspring. Whereas animal studies have demonstrated the importance of the link between perinatal cytokines and abnormal behaviors in offspring, human epidemiological studies in this area remain limited. The objectives of the study were to describe the network of cord serum cytokines at birth and test whether they are associated with subsequent anxiety and depression symptom trajectories in offspring. METHODS: We used data and biological samples from 871 mother-child pairs followed up from pregnancy to 8 years of age and participating in the French mother-child cohort EDEN (a study on the pre- and early postnatal determinants of child health and development). Cord serum cytokines were measured at birth. Children's symptoms of anxiety and depression were assessed with the emotional difficulties subscore of the Strength and Difficulties Questionnaire at ages 3, 5, and 8 years, from which trajectories of anxiety-depression symptoms were derived. RESULTS: Results showed a significant association between cord serum interleukin-7 at birth and the trajectories of children's anxiety-depression symptoms between ages 3 to 8 years (adjusted odds ratio, 0.73; 95% confidence interval, 0.57-0.93). The associations considered relevant confounders, including prenatal maternal depressive symptoms. CONCLUSIONS: Early immune changes may contribute to subsequent anxiety and depression symptoms in childhood. Beyond the understanding of mechanisms underlying the occurrence of emotional difficulties in children, our findings open avenues for future research in human and animals.


Asunto(s)
Citocinas , Depresión , Ansiedad/epidemiología , Niño , Preescolar , Estudios de Cohortes , Depresión/epidemiología , Femenino , Humanos , Recién Nacido , Relaciones Madre-Hijo , Madres , Embarazo
14.
Stem Cells ; 27(7): 1529-37, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19530134

RESUMEN

Dax-1 (Nr0b1) is an orphan member of the nuclear hormone receptor superfamily that has a key role in adrenogonadal development and function. Recent studies have also implicated Dax-1 in the transcriptional network controlling embryonic stem (ES) cell pluripotency. Here, we show that Dax-1 expression is affected by differentiating treatments and pharmacological activation of beta-catenin-dependent transcription in mouse ES cells. Furthermore, Dax-1 knockdown induced upregulation of multilineage differentiation markers, and produced enhanced differentiation and defects in ES viability and proliferation. Through RNA interference and transcriptome analysis, we have identified genes regulated by Dax-1 in mouse ES cells at 24 and 48 hours after knockdown. Strikingly, the great majority of these genes are upregulated, showing that the prevalent function of Dax-1 is to act as a transcriptional repressor in mouse ES cells, as confirmed by experiments using the Gal4 system. Genes involved in tissue differentiation and control of proliferation are significantly enriched among Dax-1-regulated transcripts. These data show that Dax-1 is an essential element in the molecular circuit involved in the maintenance of ES cell pluripotency and have implications for the understanding of stem cell function in both physiological (adrenal gland) and clinical (Ewing tumors) settings where Dax-1 plays a pivotal role in development and pathogenesis, respectively.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores de Ácido Retinoico/fisiología , Proteínas Represoras/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Receptor Nuclear Huérfano DAX-1 , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimetilsulfóxido/farmacología , Células Madre Embrionarias/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Factor Inhibidor de Leucemia/farmacología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/efectos de los fármacos , Interferencia de ARN , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Stem Cells ; 27(7): 1643-53, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19544452

RESUMEN

The identification of the factors that allow better monitoring of stem cell renewal and differentiation is of paramount importance for the implementation of new regenerative therapies, especially with regard to the nervous and hematopoietic systems. In this article, we present new information on the function of zinc finger protein 191 (ZNF/Zfp191), a factor isolated in hematopoietic cell lines, within progenitors of the central nervous system (CNS). ZNF/Zfp191 has been found to be principally expressed in progenitors of the developing CNS of humans and mice. Such an overlap of the expression patterns in addition to the high homology of the protein in mammals suggested that ZNF/Zfp191 exerts a conserved function within such progenitors. Indeed, ZNF191 knockdown in human neural progenitors inhibits proliferation and leads to the exit of the cell cycle. Conversely, ZNF191 misexpression maintains progenitors in cycle and exerts negative control on the Notch pathway, which prevents them from differentiating. The present data, together with the fact that the inactivation of Zfp191 leads to embryonic lethality, confirm ZNF191 as an essential factor acting for the promotion of the cell cycle and thus maintenance in the progenitor stage. On the bases of expression data, such a function can be extended to progenitor cells of other tissues such as the hematopoietic system, which emphasizes the important issue of further understanding the molecular events controlled by ZNF/Zfp191.


Asunto(s)
Proteínas Portadoras/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Neuronas/citología , Neuronas/metabolismo , Células Madre/citología , Animales , Proteínas Portadoras/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Línea Celular Tumoral , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Embrión de Pollo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Citometría de Flujo , Humanos , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/genética , Lentivirus/genética , Masculino , Ratones , Embarazo , Receptores Notch/genética , Receptores Notch/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre/metabolismo
16.
Brain Behav Immun Health ; 8: 100141, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34589885

RESUMEN

Disruption of neurodevelopmental trajectories can alter brain circuitry and increase the risk of psychopathology later in life. While preclinical studies have demonstrated that the immune system and cytokines influence neurodevelopment, whether immune activity and in particular which cytokines at birth are associated with psychopathology remains poorly explored in children. We used data and biological samples from 869 mother-child pairs participating in the French mother-child cohort EDEN. As proxies for immune activity at birth, we measured the levels of 27 cytokines in umbilical cord blood sera (CBS). We then explored the association between CBS cytokine levels and five psychopathological dimensions assessed in 5-year-old children using the Strengths and Difficulties Questionnaire (SDQ). Five cytokines were positively associated with psychopathology: C-X-C motif chemokine Ligand (CXCL)10, interleukin (IL)-10 and IL-12p40 with emotional symptoms, C-C motif chemokine Ligand (CCL)11 with conduct problems, and CCL11, and IL-17A with peer relationships problems. In contrast, seven cytokines were negatively associated with psychopathology: IL-7, IL-15 and Tumor Necrosis Factor (TNF)-ß with emotional symptoms, CCL4 and IL-6 with conduct problems, CCL26 and IL-15 with peer relationships problems, and CCL26, IL-7, IL-15, and TNF-α with abnormal prosocial behavior. Without implying causation, these associations support the notion that cytokines influence neurodevelopment in humans and the risk of psychopathology later in life.

17.
J Neurosci Res ; 87(2): 532-44, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18803282

RESUMEN

RNA interference (RNAi) is a potent mechanism for local silencing of gene expression and can be used to study loss-of-function phenotypes in mammalian cells. We used RNAi to knockdown specifically the expression of choline acetyltransferase (ChAT), the enzyme of acetylcholine biosynthesis, both in cultured cells and in the adult brain. We first identified a 19-nucleotide sequence in the coding region of rat and mouse ChAT transcripts that constitutes a target for potent silencing of ChAT expression by RNAi. We generated a lentiviral vector that produces both a small hairpin RNA (shRNA) targeting ChAT mRNAs and the enhanced green fluorescent protein (EGFP) reporter protein to facilitate identification of transduced cells. In the cholinergic cell line NG108-15, there was at least 90% less of the ChAT protein, as measured by assaying its enzymatic activity, 3 days postinfection with this vector than in cells infected with a control vector. The vector was used to transduce cholinergic neurons in vivo and reduced ChAT expression strongly and specifically in the cholinergic neurons of the medial septum in adult rats, without affecting the expression of the vesicular acetylcholine transporter. This lentiviral vector is thus a powerful tool for specific inactivation of cholinergic neurotransmission and can therefore be used to study the role of cholinergic nuclei in the brain. This lentiviral-mediated RNAi approach will also allow the development of new animal models of diseases in which cholinergic neurotransmission is specifically altered.


Asunto(s)
Encéfalo/enzimología , Colina O-Acetiltransferasa/genética , Neuronas/enzimología , Interferencia de ARN , Transducción Genética/métodos , Animales , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Lentivirus/genética , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Transfección
18.
Transl Psychiatry ; 9(1): 20, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655509

RESUMEN

Early response to first-line antipsychotic treatments is strongly associated with positive long-term symptomatic and functional outcome in psychosis. Unfortunately, attempts to identify reliable predictors of treatment response in first-episode psychosis (FEP) patients have not yet been successful. One reason for this could be that FEP patients are highly heterogeneous in terms of symptom expression and underlying disease biological mechanisms, thereby impeding the identification of one-size-fits-all predictors of treatment response. We have used a clustering approach to stratify 325 FEP patients into four clinical subtypes, termed C1A, C1B, C2A and C2B, based on their symptoms assessed using the Positive and Negative Syndrome Scale (PANSS) scale. Compared to C1B, C2A and C2B patients, those from the C1A subtype exhibited the most severe symptoms and were the most at risk of being non-remitters when treated with the second-generation antipsychotic drug amisulpride. Before treatment, C1A patients exhibited higher serum levels of several pro-inflammatory cytokines and inflammation-associated biomarkers therefore validating our stratification approach on external biological measures. Most importantly, in the C1A subtype, but not others, lower serum levels of interleukin (IL)-15, higher serum levels of C-X-C motif chemokine 12 (CXCL12), previous exposure to cytomegalovirus (CMV), use of recreational drugs and being younger were all associated with higher odds of being non-remitters 4 weeks after treatment. The predictive value of this model was good (mean area under the curve (AUC) = 0.73 ± 0.10), and its specificity and sensitivity were 45 ± 0.09% and 83 ± 0.03%, respectively. Further validation and replication of these results in clinical trials would pave the way for the development of a blood-based assisted clinical decision support system in psychosis.


Asunto(s)
Antipsicóticos/uso terapéutico , Citocinas/sangre , Trastornos Psicóticos/sangre , Trastornos Psicóticos/tratamiento farmacológico , Adolescente , Adulto , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Inflamación/metabolismo , Internacionalidad , Modelos Logísticos , Masculino , Escalas de Valoración Psiquiátrica , Adulto Joven
20.
Gene Expr Patterns ; 8(3): 148-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18096443

RESUMEN

The human zinc finger protein 191 (ZNF191) is a Krüppel-like protein and can specifically interact with the widespread TCAT motif which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene (encoding the rate-limiting enzyme in the synthesis of catecholamines). Allelic variations of HUMTH01 are known to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. This factor has been isolated from bone marrow and promyelocytic leukemia cell lines indicating that ZNF191 also plays a role in hematopoiesis. Thus, ZNF191 could participate in the regulation of several genes implicated in different functions. Moreover, mice that are deficient in Zfp191, the murine homologue of ZNF191, have been shown to be severely retarded in development and to die approximately at embryonic day 7.5. In order to gain further insight into its biological functions, we have analysed the localisation of Zfp191 throughout mouse development. Expression was detected early during embryogenesis in ectodermal, endodermal, mesodermal and extra-embryonic tissues. In particular, Zfp191 was observed in the developing central nervous system. Interestingly, its expression levels were prominent in areas of proliferation such as the subventricular zone. Zfp191 expression pattern during development can account for the phenotypic features of Zfp191(-/-) embryos.


Asunto(s)
Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Desarrollo Embrionario/fisiología , Femenino , Ratones , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Fenotipo , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA