Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(5): 1634-1646, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376999

RESUMEN

The gamma aminobutyric acid (GABA) neurotransmission system has been implicated in autism spectrum disorder (ASD). Molecular neuroimaging studies incorporating simultaneous acquisitions of GABA concentrations and GABAA receptor densities can identify objective molecular markers in ASD. We measured both total GABAA receptor densities by using [18F]flumazenil positron emission tomography ([18F]FMZ-PET) and GABA concentrations by using proton magnetic resonance spectroscopy (1H-MRS) in 28 adults with ASD and 29 age-matched typically developing (TD) individuals. Focusing on the bilateral thalami and the left dorsolateral prefrontal cortex (DLPFC) as our regions of interest, we found no differences in GABAA receptor densities between ASD and TD groups. However, 1H-MRS measurements revealed significantly higher GABA/Water (GABA normalized by water signal) in the left DLPFC of individuals with ASD than that of TD controls. Furthermore, a significant gender effect was observed in the thalami, with higher GABA/Water in males than in females. Hypothesizing that thalamic GABA correlates with ASD symptom severity in gender-specific ways, we stratified by diagnosis and investigated the interaction between gender and thalamic GABA/Water in predicting Autism-Spectrum Quotient (AQ) and Ritvo Autism Asperger's Diagnostic Scale-Revised (RAADS-R) total scores. We found that gender is a significant effect modifier of thalamic GABA/Water's relationship with AQ and RAADS-R scores for individuals with ASD, but not for TD controls. When we separated the ASD participants by gender, a negative correlation between thalamic GABA/Water and AQ was observed in male ASD participants. Remarkably, in female ASD participants, a positive correlation between thalamic GABA/Water and AQ was found.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Femenino , Humanos , Masculino , Corteza Prefrontal , Tálamo/diagnóstico por imagen , Ácido gamma-Aminobutírico
2.
AJR Am J Roentgenol ; 218(2): 333-340, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34406051

RESUMEN

BACKGROUND. Growing clinical adoption of PET/MRI for prostate cancer (PC) evaluation has increased interest in reducing PET/MRI scanning times. Reducing acquisition time per bed position below current times of at least 5 minutes would allow shorter examination lengths. OBJECTIVE. The purpose of this study was to evaluate the effect of different reduced PET acquisition times in patients with PC who underwent 68Ga-PSMA-11 or 68Ga-RM2 PET/MRI using highly sensitive silicon photomultiplier-based PET detectors. METHODS. This study involved retrospective review of men with PC who underwent PET/MRI as part of one of two prospective trials. Fifty men (mean [± SD] age, 69.9 ± 6.8 years) who underwent 68Ga-RM2 PET/MRI and 50 men (mean age, 66.6 ± 5.7 years) who underwent 68Ga-PSMA-11 PET/MRI were included. PET/MRI used a time-of-flight-enabled system with silicon photomultiplier-based detectors. The acquisition time was 4 minutes per bed position. PET data were reconstructed using acquisition times of 30 seconds, 1 minute, 2 minutes, 3 minutes, and 4 minutes. Three readers independently assessed image quality for each reconstruction using a 5-point Likert scale (with 1 denoting nondiagnostic and 5 indicating excellent quality). One reader measured SUVmax for up to six lesions per patient. Two readers independently assessed lesion conspicuity using a a 3-point Likert scale (with 1 indicating that lesions were not visualized and 3 denoting that they were definitely visualized). RESULTS. Mean image quality across readers at 30 seconds, 1 minutes, 2 minutes, 3 minutes, and 4 minutes was, for 68Ga-RM2 PET/MRI, from 1.0 ± 0.2 to 1.7 ± 0.7, 2.0 ± 0.3 to 2.6 ± 0.8, 3.1 ± 0.5 to 3.9 ± 0.8, 4.6 ± 0.6 to 4.7 ± 0.6, and 4.8 ± 0.4 to 4.8 ± 0.5, respectively, and for 68Ga-PSMA-11 PET/MRI it was from 1.2 ± 0.4 to 1.8 ± 0.6, 2.2 ± 0.4 to 2.8 ± 0.7, 3.6 ± 0.6 to 4.1± 0.8, 4.8 ± 0.4 to 4.9 ± 0.4, and 4.9 ± 0.3 to 5.0 ± 0.2, respectively. The mean lesion SUVmax for 68Ga-RM2 PET/MRI was 11.1 ± 12.4, 10.2 ± 11.7, 9.6 ± 11.3, 9.5 ± 11.6, and 9.4 ± 11.6, respectively, and for 68Ga-PSMA-11 PET/MRI it was 14.7 ± 8.2, 12.9 ± 7.4, 12.1 ± 7.8, 11.7 ± 7.9, and 11.6 ± 7.9, respectively. Mean lesion conspicuity (reader 1/reader 2) was, for 68Ga-RM2 PET/MRI, 2.4 ± 0.5/2.7 ± 0.5, 2.9 ± 0.3/2.9 ± 0.3, 3.0 ± 0.0/3.0 ± 0.0, 3.0 ± 0.0/3.0 ± 0.0, and 3.0 ± 0.0/3.0 ± 0.0, respectively, and for 68Ga-PSMA-11 PET/MRI it was 2.6 ± 0.5/2.8 ± 0.4, 3.0 ± 0.2/2.9 ± 0.3, 3.0 ± 0.1/3.0 ± 0.2, 3.0 ± 0.0/3.0 ± 0.0, and 3.0 ± 0.0/3.0 ± 0.0, respectively. CONCLUSION. Our data support routine 3-minute acquisitions, which provided results very similar to those for 4-minute acquisitions. Two-minute acquisitions, although they lowered quality somewhat, provided acceptable performance and warrant consideration. CLINICAL IMPACT. When PC is evaluated using modern PET/MRI equipment, time per bed position may be reduced compared with historically used times. TRIAL REGISTRATION. ClinicalTrials.gov NCT02624518 and NCT02678351.


Asunto(s)
Isótopos de Galio , Radioisótopos de Galio , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Radiofármacos , Anciano , Humanos , Masculino , Estudios Prospectivos , Próstata/diagnóstico por imagen , Estudios Retrospectivos , Tiempo
3.
Appl Opt ; 61(3): 676-682, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35200771

RESUMEN

With the increasing use of organic light emitting diodes in lights, smart phones, wearable smartwatches, and computers, visible light-based device-to-device (D2D) communications has become more and more relevant. We propose D2D communications using smart phones' display pixels and their built-in cameras. We investigate the impact of receiver orientation and user mobility on the link performance. We derive a Gaussian model for the probability density function of the delay spread and optical path loss (OPL), and show that the channel delay spread decreases for a typical furnished room compared with an empty room, whereas the former has an increased OPL. In addition, we show that for the case of a furnished room and considering user mobility, the peak OPL values are about 64 and 62 dB, with and without considering the receiver's random orientation, respectively.

4.
Appl Opt ; 61(22): 6599-6608, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255886

RESUMEN

Wireless sensor networks (WSNs) are currently being deployed in everyday objects to collect and transmit information related to humidity, temperature, heartbeat, motion, etc. Such networks are part of the massive machine-type communication (mMTC) scenario within the fifth/sixth generation of wireless networks. In this paper, we consider the optimization and design of an optical WSN composed of multiple battery-powered sensor nodes based on light-emitting diode transmitters. Extending our previous work, we take into account both line-of-sight and diffuse-light propagation, and show that in indoor scenarios, diffuse radiation can improve link availability under shadowing/blocking and extend battery life. In order to optimize the optical wireless link parameters, we use a machine-learning approach based on a genetic algorithm to ascertain the performance limits of the system. The presented results indicate that the proposed system is a viable wireless option for WSNs within the context of mMTC.

5.
Neuroimage ; 233: 117955, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33716155

RESUMEN

Cerebrovascular reactivity (CVR) reflects the capacity of the brain to meet changing physiological demands and can predict the risk of cerebrovascular diseases. CVR can be obtained by measuring the change in cerebral blood flow (CBF) during a brain stress test where CBF is altered by a vasodilator such as acetazolamide. Although the gold standard to quantify CBF is PET imaging, the procedure is invasive and inaccessible to most patients. Arterial spin labeling (ASL) is a non-invasive and quantitative MRI method to measure CBF, and a consensus guideline has been published for the clinical application of ASL. Despite single post labeling delay (PLD) pseudo-continuous ASL (PCASL) being the recommended ASL technique for CBF quantification, it is sensitive to variations to the arterial transit time (ATT) and labeling efficiency induced by the vasodilator in CVR studies. Multi-PLD ASL controls for the changes in ATT, and velocity selective ASL is in theory insensitive to both ATT and labeling efficiency. Here we investigate CVR using simultaneous 15O-water PET and ASL MRI data from 19 healthy subjects. CVR and CBF measured by the ASL techniques were compared using PET as the reference technique. The impacts of blood T1 and labeling efficiency on ASL were assessed using individual measurements of hematocrit and flow velocity data of the carotid and vertebral arteries measured using phase-contrast MRI. We found that multi-PLD PCASL is the ASL technique most consistent with PET for CVR quantification (group mean CVR of the whole brain = 42±19% and 40±18% respectively). Single-PLD ASL underestimated the CVR of the whole brain significantly by 15±10% compared with PET (p<0.01, paired t-test). Changes in ATT pre- and post-acetazolamide was the principal factor affecting ASL-based CVR quantification. Variations in labeling efficiency and blood T1 had negligible effects.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/metabolismo , Trastornos Cerebrovasculares/metabolismo , Imagen por Resonancia Magnética/normas , Tomografía de Emisión de Positrones/normas , Marcadores de Spin , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Trastornos Cerebrovasculares/diagnóstico por imagen , Femenino , Hematócrito/métodos , Hematócrito/normas , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Radioisótopos de Oxígeno/metabolismo , Tomografía de Emisión de Positrones/métodos , Factores de Tiempo , Agua/metabolismo
6.
J Magn Reson Imaging ; 51(1): 183-194, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044459

RESUMEN

BACKGROUND: H215 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE: To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H215 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE: Observational. SUBJECTS: Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES: 3T/2D cardiac-gated phase-contrast MRI and H215 O-PET. ASSESSMENT: PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS: The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H215 O-PET in future studies. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.


Asunto(s)
Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/fisiopatología , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Femenino , Humanos , Masculino , Radioisótopos de Oxígeno
7.
Sensors (Basel) ; 20(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114360

RESUMEN

Underwater optical wireless systems have dual requirements of high data rates and long ranges in harsh scattering and attenuation conditions. In this paper, we investigate the advantages and limitations of optical orthogonal frequency-division multiplexing (O-OFDM) signaling when a silicon photo-multiplier (SiPM) is used at the receiver in order to ensure high sensitivity. Considering a light-emitting diode (LED) transmitter and taking into account the limited dynamic range imposed by the transmitter and the SiPM receiver, we study the performance of three popular O-OFDM schemes, i.e., DC-biased, asymmetrically-clipped, and layered asymmetrically-clipped O-OFDM (DCO-, ACO-, and LACO-OFDM, respectively). We consider a constraint on transmit electrical power PTxe and take into account the required DC bias for the three considered schemes in practice, showing the undeniable advantage of ACO- and LACO-OFDM in terms of energy efficiency. For instance, for the considered SiPM and LED components, a spectral efficiency of ∼1 bps/Hz with a data rate of 20 Mbps, a link range of 70 m, and a target bit-error-rate (BER) of 10-3, ACO and LACO allow a reduction of about 10 and 6 mW, respectively, in the required PTxe, compared to DCO-OFDM. Meanwhile, we show that when relaxing the PTxe constraint, DCO-OFDM offers the largest operational link range within which a target BER can be achieved. For instance, for a target BER of 10-3 and a data rate of 20 Mbps, and considering PTxe of 185, 80, and 50 mW for DCO-, LACO-, and ACO-OFDM, respectively, the corresponding intervals of operational link range are about 81, 74.3, and 73.8 m. Lastly, we show that LACO-OFDM makes a good compromise between energy efficiency and operational range flexibility, although requiring a higher computational complexity and imposing a longer latency at the receiver.

8.
Stroke ; 50(2): 373-380, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30636572

RESUMEN

Background and Purpose- Noninvasive imaging of brain perfusion has the potential to elucidate pathophysiological mechanisms underlying Moyamoya disease and enable clinical imaging of cerebral blood flow (CBF) to select revascularization therapies for patients. We used hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) technology to characterize the distribution of hypoperfusion in Moyamoya disease and its relationship to vessel stenosis severity, through comparisons with a normative perfusion database of healthy controls. Methods- To image CBF, we acquired [15O]-water PET as a reference and simultaneously acquired arterial spin labeling (ASL) MRI scans in 20 Moyamoya patients and 15 age-matched, healthy controls on a PET/MRI scanner. The ASL MRI scans included a standard single-delay ASL scan with postlabel delay of 2.0 s and a multidelay scan with 5 postlabel delays (0.7-3.0s) to estimate and account for arterial transit time in CBF quantification. The percent volume of hypoperfusion in patients (determined as the fifth percentile of CBF values in the healthy control database) was the outcome measure in a logistic regression model that included stenosis grade and location. Results- Logistic regression showed that anterior ( P<0.0001) and middle cerebral artery territory regions ( P=0.003) in Moyamoya patients were susceptible to hypoperfusion, whereas posterior regions were not. Cortical regions supplied by arteries with stenosis on MR angiography showed more hypoperfusion than normal arteries ( P=0.001), but the extent of hypoperfusion was not different between mild-moderate versus severe stenosis. Multidelay ASL did not perform differently from [15O]-water PET in detecting perfusion abnormalities, but standard ASL overestimated the extent of hypoperfusion in patients ( P=0.003). Conclusions- This simultaneous PET/MRI study supports the use of multidelay ASL MRI in clinical evaluation of Moyamoya disease in settings where nuclear medicine imaging is not available and application of a normative perfusion database to automatically identify abnormal CBF in patients.


Asunto(s)
Bases de Datos Factuales , Imagen por Resonancia Magnética , Arteria Cerebral Media , Enfermedad de Moyamoya , Tomografía de Emisión de Positrones , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/fisiopatología , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/fisiopatología , Marcadores de Spin
9.
Magn Reson Med ; 81(4): 2808-2822, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30426583

RESUMEN

PURPOSE: Managing local specific absorption rate (SAR) in parallel transmission requires ensuring that the peak SAR over a large number of voxels (> 105 ) is below the regulatory limit. The safety risk to the patient depends on cumulative (not instantaneous) SAR thus making a joint design of all RF pulses in a sequence desirable. We propose the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE), an efficient optimization formulation and algorithm that can handle uncompressed SAR matrices and optimize pulses for all slices jointly within a practical time frame. THEORY AND METHODS: IMPULSE optimizes parallel transmit pulses for small-tip-angle slice selective excitation to minimize a single cost function incorporating multiple quantities (local SAR, global SAR, and per-channel power) averaged over the entire multislice scan subject to a strict constraint on excitation accuracy. Pulses for an 8-channel 7T head coil were designed with IMPULSE and compared with pulses designed using generic optimization algorithms and VOPs to assess the computation time and SAR performance benefits. RESULTS: IMPULSE achieves lower SAR and shorter computation time compared with a VOP approach. Compared with the generic sequential quadratic programming algorithm, computation time is reduced by a factor of 5-6 by using IMPULSE. Using as many as 6 million local SAR terms, up to 120 slices can be designed jointly with IMPULSE within 45 s. CONCLUSIONS: IMPULSE can handle significantly larger number of SAR matrices and slices than conventional optimization algorithms, enabling the use of uncompressed or partially compressed SAR matrices to design pulses for a multislice scan in a practical time frame.


Asunto(s)
Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Ondas de Radio , Algoritmos , Simulación por Computador , Humanos , Modelos Teóricos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Riesgo , Sensibilidad y Especificidad , Programas Informáticos
10.
AJR Am J Roentgenol ; 211(3): 655-660, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29873506

RESUMEN

OBJECTIVE: Gallium-68-labeled radiopharmaceuticals pose a challenge for scatter estimation because their targeted nature can produce high contrast in these regions of the kidneys and bladder. Even small errors in the scatter estimate can result in washout artifacts. Administration of diuretics can reduce these artifacts, but they may result in adverse events. Here, we investigated the ability of algorithmic modifications to mitigate washout artifacts and eliminate the need for diuretics or other interventions. MATERIALS AND METHODS: The model-based scatter algorithm was modified to account for PET/MRI scanner geometry and challenges of non-FDG tracers. Fifty-three clinical 68Ga-RM2 and 68Ga-PSMA-11 whole-body images were reconstructed using the baseline scatter algorithm. For comparison, reconstruction was also processed with modified sampling in the single-scatter estimation and with an offset in the scatter tail-scaling process. None of the patients received furosemide to attempt to decrease the accumulation of radiopharmaceuticals in the bladder. The images were scored independently by three blinded reviewers using the 5-point Likert scale. RESULTS: The scatter algorithm improvements significantly decreased or completely eliminated the washout artifacts. When comparing the baseline and most improved algorithm, the image quality increased and image artifacts were reduced for both 68Ga-RM2 and for 68Ga-PSMA-11 in the kidneys and bladder regions. CONCLUSION: Image reconstruction with the improved scatter correction algorithm mitigated washout artifacts and recovered diagnostic image quality in 68Ga PET, indicating that the use of diuretics may be avoided.


Asunto(s)
Algoritmos , Ácido Edético/análogos & derivados , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Oligopéptidos , Tomografía de Emisión de Positrones , Imagen de Cuerpo Entero , Anciano , Artefactos , Femenino , Isótopos de Galio , Radioisótopos de Galio , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/patología , Estudios Retrospectivos , Dispersión de Radiación
11.
Appl Opt ; 57(9): 2115-2120, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29604001

RESUMEN

We investigate the efficacy of error correcting codes in improving the performance of underwater wireless optical communication systems. For this purpose, the effectiveness of several coding schemes, i.e., the classical Reed-Solomon and a recent family of low-density parity check codes, is studied in the physical (PHY) and the upper layers assuming negligible water turbulence. The presented numerical results testify to the interest of using efficient codes both at the PHY and upper protocol layers, although we are concerned by a non-fading channel. Furthermore, we discuss the choice of coding schemes and the appropriate degree of data protection in the PHY and upper layers.

12.
Stroke ; 48(9): 2441-2449, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28765286

RESUMEN

BACKGROUND AND PURPOSE: Arterial spin labeling (ASL) MRI is a promising, noninvasive technique to image cerebral blood flow (CBF) but is difficult to use in cerebrovascular patients with abnormal, long arterial transit times through collateral pathways. To be clinically adopted, ASL must first be optimized and validated against a reference standard in these challenging patient cases. METHODS: We compared standard-delay ASL (post-label delay=2.025 seconds), multidelay ASL (post-label delay=0.7-3.0 seconds), and long-label long-delay ASL acquisitions (post-label delay=4.0 seconds) against simultaneous [15O]-positron emission tomography (PET) CBF maps in 15 Moyamoya patients on a hybrid PET/MRI scanner. Dynamic susceptibility contrast was performed in each patient to identify areas of mild, moderate, and severe time-to-maximum (Tmax) delays. Relative CBF measurements by each ASL scan in 20 cortical regions were compared with the PET reference standard, and correlations were calculated for areas with moderate and severe Tmax delays. RESULTS: Standard-delay ASL underestimated relative CBF by 20% in areas of severe Tmax delays, particularly in anterior and middle territories commonly affected by Moyamoya disease (P<0.001). Arterial transit times correction by multidelay acquisitions led to improved consistency with PET, but still underestimated CBF in the presence of long transit delays (P=0.02). Long-label long-delay ASL scans showed the strongest correlation relative to PET, and there was no difference in mean relative CBF between the modalities, even in areas of severe delays. CONCLUSIONS: Post-label delay times of ≥4 seconds are needed and may be combined with multidelay strategies for robust ASL assessment of CBF in Moyamoya disease.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Enfermedad de Moyamoya/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/irrigación sanguínea , Circulación Colateral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones , Marcadores de Spin
13.
Opt Express ; 24(22): 25832-25845, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828532

RESUMEN

We investigate the effect of environmental noise, caused by solar radiations under water, on the performance of underwater wireless optical communication (UWOC) systems. Presenting an analytical and generic model for this noise, we examine its impact on the link performance in terms of the bit error rate (BER). This study is conducted for different photo-detector types in the aim of highlighting practical limitations of establishing UWOC links in the presence of subsea solar noise. We show how the solar noise can impact the performance of UWOC links for relatively low operation depths. The results we present provide valuable insight for the design of UWOC links, which are likely to be established at relatively low depths. They can be exploited not only for the purpose of practical UWOC system deployment but also for in-pool experimental set-ups, since they elucidate the effect of ambient light on the measurements.

14.
Appl Opt ; 55(1): 1-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26835614

RESUMEN

Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.

15.
Magn Reson Med ; 70(3): 829-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23041985

RESUMEN

The Bloch-Siegert (B-S) B1+ mapping method has been shown to be fast and accurate, yet it suffers from high Specific Absorption Rate (SAR) and moderately long echo time. An adiabatic RF pulse design is introduced here for optimizing the off-resonant B-S RF pulse to achieve more B-S B1+ measurement sensitivity for a given pulse width. The extra sensitivity can be used for higher angle-to-noise ratio B1+ maps or traded off for faster scans. Using numerical simulations and phantom experiments, it is shown that a numerically optimized 2-ms adiabatic B-S pulse is 2.5 times more efficient than a conventional 6-ms Fermi-shaped B-S pulse. The adiabatic B-S pulse performance is validated in a phantom, and in vivo brain B1+ mapping at 3T and 7T are shown.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/anatomía & histología , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Fantasmas de Imagen
16.
Magn Reson Med ; 70(6): 1669-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23401024

RESUMEN

The Bloch-Siegert (B-S) B1 (+) mapping technique is a fast, phase-based method that is highly SAR limited especially at 7T, necessitating the use of long repetition times. Spiral and echo-planar readouts were incorporated in a gradient-echo based B-S sequence to reduce specific absoprtion rate (SAR) and improve its scan efficiency. A novel, numerically optimized 4 ms B-S off-resonant pulse at + 1960 Hz was used to increase sensitivity and further reduce SAR compared with the conventional 6 ms Fermi B-S pulse. Using echo-planar and spiral readouts, scan time reductions of 8-16 were achieved. By reducing the B-S pulse width by a factor of 1.5, SAR was reduced by a factor of 1.5 and overall sensitivity was increased by a factor of 1.33 due to the nearly halved resonance offset of the new B-S pulse. This was validated on phantoms and volunteers at 7 T.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Opt Lett ; 38(3): 350-2, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23381434

RESUMEN

Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.

18.
Appl Opt ; 52(24): 5903-11, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24084990

RESUMEN

The efficacy of spatial diversity in practical free-space optical communication systems is impaired by the fading correlation among the underlying subchannels. We consider in this paper the generation of correlated Gamma-Gamma random variables in view of evaluating the system outage probability and bit-error-rate under the condition of correlated fading. Considering the case of receive-diversity systems with intensity modulation and direct detection, we propose a set of criteria for setting the correlation coefficients on the small- and large-scale fading components based on scintillation theory. We verify these criteria using wave-optics simulations and further show through Monte Carlo simulations that we can effectively neglect the correlation corresponding to the small-scale turbulence in most practical systems, irrespective of the specific turbulence conditions. This has not been clarified before, to the best of our knowledge. We then present some numerical results to illustrate the effect of fading correlation on the system performance. Our conclusions can be generalized to the cases of multiple-beam and multiple-beam multiple-aperture systems.

19.
Magn Reson Med ; 68(3): 857-62, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22144397

RESUMEN

The Bloch-Siegert (B-S) method of B 1⁺ mapping has been shown to be fast and accurate, yet has high SAR and moderately long TE. These limitations can lengthen scan times and incur signal loss due to B(0) inhomogeneity, particularly at high field. The B-S method relies on applying a band-limited off-resonant B-S radiofrequency pulse to induce a B 1⁺-dependent frequency-shift for resonant spins. A method for optimizing the B-S radiofrequency pulse is presented here, which maximizes B-S B 1⁺ measurement sensitivity for a given SAR and T(2) . A 4-ms optimized pulse is shown to have 35% less SAR compared with the conventional 6-ms Fermi pulse while still improving B 1⁺ map angle-to-noise ratio by 22%. The optimized pulse performance is validated both in phantom and in vivo brain imaging at 7 T.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Humanos , Fantasmas de Imagen , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Magn Reson Med ; 67(4): 1077-85, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21954048

RESUMEN

Spin echo pulse sequences are used to produce clinically important T(2) contrast. However, conventional 180° radiofrequency pulses required to generate a spin echo are highly susceptible to the B(1) inhomogeneity at high magnetic fields such as 7 Tesla (7 T), resulting in varying signal and contrast over the region of interest. Adiabatic 180° pulses may be used to replace conventional 180° pulses in spin echo sequences to provide greater immunity to the inhomogeneous B(1) field at 7 T. However, because the spectral profile of an adiabatic 180° pulse has nonlinear phase, pairs of these pulses are needed for proper refocusing, resulting in increased radiofrequency power deposition and long minimum echo times. We used the adiabatic Shinnar Le-Roux method to generate a matched-phase adiabatic 90°-180° pulse pair to obviate the need for a second adiabatic 180° pulse for phase refocusing. The pulse pair was then reformulated into a single self-refocused pulse to minimize the echo time, and phantom and in vivo experiments were performed to validate pulse performance. The self-refocused adiabatic pulse produced transmit profiles that were substantially more uniform than those achieved using a conventional spin echo sequence.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA