Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 438, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469012

RESUMEN

In terms of producing new advances in sustainable nanomaterials, cation exchange (CE) of post-processed colloidal nanocrystals (NCs) has opened new avenues towards producing non-toxic energy materials via simple chemical techniques. The main processes governing CE can be explained by considering hard/soft acid/base theory, but the detailed mechanism of CE, however, has been debated and has been attributed to both diffusion and vacancy processes. In this work, we have performed in situ x-ray absorption spectroscopy to further understand the mechanism of the CE of copper in solution phase CdSe NCs. The x-ray data indicates clear isosbestic points, suggestive of cooperative behavior as previously observed via optical spectroscopy. Examination of the extended x-ray absorption fine structure data points to the observation of interstitial impurities during the initial stages of CE, suggesting the diffusion process is the fundamental mechanism of CE in this system.

2.
J Phys Chem Lett ; 11(15): 5992-5999, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32633980

RESUMEN

Doping through the incorporation of transition metal ions allows for the emergence of new optical, electrical, and magnetic properties in quantum dots (QDs). While dopants can be introduced into QDs through many synthetic methods, the control of dopant location and host-dopant (H-D) coupling through directional dopant movement is still largely unexplored. In this work, we have studied dopant behaviors in Mn:CdS/ZnS core/shell QDs and found that dopant transport behavior is very sensitive to the temperature and microenvironments within the QDs. The migration of Mn toward the alloyed interface of the core/shell QDs, below a temperature boundary (Tb) at ∼200 °C, weakens the H-D interactions. At temperatures higher than the Tb, however, dopant ejection and global alloying of CdS/ZnS QDs can occur, leading to stronger H-D coupling. The behavior of incorporated dopants inside QDs is fundamentally important for understanding doping mechanisms and the host-dopant interaction-dependent properties of doped nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA