Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Environ Manage ; 305: 114379, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959062

RESUMEN

Ballasted flocculation (BF) is an efficient way to remove the turbidity from surface water. The objective of the present study is to optimize the ballast (magnetite), coagulant (poly aluminum chloride) concentration and pH for efficient turbidity removal from surface water. To do this, the sludge produced from an optimized dose of a BF treatment was utilized for the production of lightweight (LW) aggregates by combining it with hard clay and sewage sludge. The LW aggregates were formed by means of rapid sintering in the temperature range of 1000-1200 °C with an exposure time of 10 min. The physical properties of the LW aggregates, in this case the leaching of heavy metals, the bulk density and the microstructure, were investigated. The results indicated that corresponding ballast and coagulant concentrations of 0.75 g/L and 30 mg/L (poly aluminum chloride (PAC)) resulted in the maximum removal efficiency of ≈95%. Using a mixture of BF sludge (30 wt%), dry sewage sludge (20 wt%), and hard clay (50 wt%), aggregates with a density of around 1.0 g/cm3 could be produced. In addition, it was confirmed that the manufactured aggregate was environmentally stable as the elution of heavy metals was suppressed.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Arcilla , Floculación , Metales Pesados/análisis , Agua
2.
Environ Res ; 202: 111716, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34293311

RESUMEN

Commercial membranes typically suffer from fouling and wetting during membrane distillation (MD). In contrast, reverse osmosis (RO) can be subject to the fouling issue if applied for highly saline feed solutions containing foulants (e.g., organics, oils, and surfactants). Among the diverse treatment options, the nanomaterial-based membranes have recently gained great interest due to their advantageous properties (e.g., enhanced flux and roughness, better pore size distribution, and higher conductivity). This review focuses on recent advances in the mechanical properties, anti-fouling capabilities, salt rejection, and economic viability of metal oxide (SiO2, TiO2, and ZnO) and carbon nanomaterial (graphene oxide/carbon nanotube)-based membranes. Current challenges in applying nanomaterial-based membranes are also discussed. The study further describes the preparation methods, mechanisms, commercial applications, and economical feasibility of metal oxide- and carbon nanomaterial-based membrane technologies.


Asunto(s)
Nanoestructuras , Purificación del Agua , Destilación , Membranas Artificiales , Ósmosis , Dióxido de Silicio
3.
Environ Res ; 170: 374-382, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30623884

RESUMEN

The goal of this study was to prepare a robust anti-wetting and anti-fouling polyethersulfone (PES) membrane for the rejection of a highly saline (NaCl and CaCl2·2H2O) feed solution containing humic acid (HA) in direct contact membrane distillation (DCMD). Response surface methodology (RSM) was used to determine the optimum formulation of the used materials. The variable factors selected were polydimethyl siloxane (PDMS) and silica (SiO2); liquid entry pressure (LEP) and contact angle (CA) were selected as responses. Scanning electron microscopy (SEM) analysis confirmed the SiO2 deposition and Fourier-transform infrared spectroscopy (FTIR) test evidenced the new functional groups i.e., Si-OH, siloxane, and C-F bond vibrations at 3446, 1099 cm-1, and 1150-1240 cm-1 respectively on the membrane surface. The average roughness (Ra) was increased four times for the coated membranes (0.202-0.242 µm) as compared to that for pristine PES membrane (0.053 µm). The optimum PES-13 membrane exhibited consistent flux of 12 LMH and salt rejection (> 99%) with anti-fouling characteristic in DCMD using the feed solution of 3.5 wt% NaCl + 10 mM CaCl2·2H2O + 10 mg L-1 HA. The PES-13 membrane may therefore be a key membrane for application in DCMD against CaCl2·2H2O-containing salty solutions with HA.


Asunto(s)
Destilación , Dióxido de Silicio/metabolismo , Purificación del Agua , Calcio , Sustancias Húmicas , Membranas , Membranas Artificiales
4.
Chemosphere ; 351: 141113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185428

RESUMEN

In this study, the optimization of potassium carbonate (K2CO3) exposure conditions for CO2 capture with the use of 2-methypiperazine (2MPz) and monoethanolamine (MEA) as promoters was investigated. The tested operating conditions for the CO2 capture process included the pH, temperature, K2CO3 dose, gas flow rate, and pressure, and their effect on the CO2 absorption/desorption rate and CO2 absorption efficiency was assessed. Response surface methodology (RSM) was also employed to determine the equations for the optimal long-term operating conditions. The results showed that the CO2 absorption rate and efficiency increased under K2CO3 exposure with an increase in the pressure and loading rate. Moreover, for the temperature the absorption efficiency first increase and then decreases with increase in temperature, however, the with increase in temperature the faster absorption were observed with lower absorption loading rate. Furthermore, pH had a more complex effect due to its variable effects on the speciation of bicarbonate ions (HCO3-) and carbonate ions (CO32-). Under higher pH conditions, there was an increase in the concentration of HCO3-, which has a higher CO2 loading capacity than CO32-. Contouring maps were also used to visualize the effect of different exposure conditions on the CO2 absorption rate and efficiency and the role of 2MPz and MEA as promoters in the K2CO3 solution for CO2 absorption. The results showed that the mean CO2 absorption rate was 6.76 × 10-4 M/L/s with an R2 of 0.9693 for the K2CO3 solution containing 2MPz. The highest absorption rate (6.56-7.20 × 10-4 M/L/s) was observed at a temperature of 298-313 K, a pressure of >2 bar, a pH of 8-9, and a loading rate of 80-120 L/h for a concentration of 1-3 M K2CO3 and 0.05-1.5 M 2MPz. The CO2 absorption efficiency exhibited a variation of 56-70% under the same conditions.


Asunto(s)
Dióxido de Carbono , Etanolamina , Piperazinas , Temperatura
5.
Adv Colloid Interface Sci ; 332: 103250, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047647

RESUMEN

The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.

6.
Chemosphere ; 341: 140073, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689156

RESUMEN

Low-pressure membrane (LPM) filtration, including microfiltration (MF) and ultrafiltration (UF), is a promising technology for the treatment of surface water for drinking and other purposes. Various configurations and operational sequences have been developed to ensure the sustainable provision of clean water by overcoming fouling problems. In the literature, various periodic physical and/or chemical approaches to the cleaning of LPMs have been reported, but little data is available on the aging of MF/UF membranes that results from the interaction between the foulants and the cleaning agent. Periodic physical cleaning of the membrane is expected to return the membrane to its original performance capacity, but it only recovers to a certain level because the remaining foulants cause irreversible fouling. Chemical cleaning can then be employed to recover the membrane from this irreversible fouling but, in the process, it can cause irrecoverable damage to the membrane. In this review, the foulants responsible for irrecoverable damage to MF/UF membranes are summarized, and their interaction with cleaning agents and other foulants is described. The impact of these foulants on various membrane parameters, including filtration efficiency, flux decline, permeability, membrane characterization, and membrane integrity are also summarized and discussed in detail. In addition, mitigation options and future prospects are also discussed with regard to increasing the operational life span of a membrane in a cost-effective manner. Ultimately, this review suggests an advanced control system based on membrane-foulant interactions under the impact of various operational parameters to mitigate the integrity loss of membranes.


Asunto(s)
Longevidad , Agua , Fenómenos Químicos , Membranas
7.
Membranes (Basel) ; 13(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999339

RESUMEN

The goal of this study was to elucidate the interaction of complex feed solutions under modified membrane fouling models for constant flux operation. The polyvinylidene fluoride membrane (PVDF) was tested for three types of solutions containing inorganic foulants (Al, Mn, and Fe), organic foulants, and suspended solids at 0.5 mM Ca2+ ionic strength. The membrane's performance was evaluated by measuring the increase in transmembrane pressure (TMP) during two different filtration scenarios: continuous filtration lasting 1 h and cyclic filtration lasting 12 min, with 3 min backwashing cycles included. Statistical analysis (linear regression results (R2), p-value) was used to verify the fouling model propagation along with the determination of the contributing constant of each fouling model. An increasing TMP percentage of 164-302%, 155-300%, and 208-378% for S1 (HA + Ca2+), S2 (inorganics + kaolin + Ca2+), and S3 (HA + inorganics + kaolin + Ca2+) was recorded for 1 h filtration, respectively. Furthermore, a five percent increase in irreversible resistance was noted for the S3 solution due to the strong adsorption potential of foulants for the PVDF membrane caused by the electrostatic and hydration forces of foulants. In addition to that, the participation equation elucidated the contribution of the fouling model and confirmed that complete blocking and cake layer contribution were dominant for the S1 and S3 solutions, while standard blocking was dominant for the S2 solution with a high significance ratio. Moreover, R2 and cyclic filtration analysis also confirmed the propagation of these fouling models. The statistical confirmation and regression results analysis of the modified model gave comparative results and satisfied the filtration mechanism and can be used for the constant flux dead filtration analysis of water treatment.

8.
ACS Omega ; 8(44): 41064-41076, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970001

RESUMEN

Heterogeneous growth of photocatalysts on different porous substrates is a solution to avoid secondary pollution caused by composite photocatalysts themselves. However, the heterogeneous growth of composite photocatalysts with nitrogen-doped carbon quantum dots (NCQDs) inclusions-introduced during synthesis-impedes the direct growth on the substrate. To overcome this problem, NCQDs were grown on a Co9S8 (NCQDs-G@Co9S8) layer, decorated on cotton fabric. This optimal coupling mode of NCQDs and Co9S8 showed 54% degradation, compared to 33% dye degradation via NCQDs-doped Co9S8 (NCQDs-D@Co9S8). The change in the crystal structure and its lower loading on fabric results in significantly lower performance of NCQDs-D@Co9S8. Even with the combination of both surface growth and doping (NCQDs-DG@Co9S8), the performance was still limited to 42%. In addition, the optimum growth concentration of NCQDs on Co9S8 was observed for 7.5 w/w %, resulting in 92% photocatalytic activity (PCA) in 80 min. Comparing different surface states formed in NCQDs using different solvents, water-based surface states (oxygen-rich surface) are most suitable for the dye degradation. NCQDs-G@Co9S8 also offers 67% Cr-VI reduction to Cr-III, showing its suitability for both inorganic and organic compounds. Better electrode performance was related to suitable charge separation of the composite, where -OH groups mainly contribute in the photocatalytic dye degradation..

9.
Chemosphere ; 335: 139096, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295688

RESUMEN

In this study, the removal efficiency of chemicals of emerging concerns (CECs) was evaluated under exposure to various doses of UV/H2O2-based oxidation processes in combination with membrane filtration for three cleaning cycles. Polyethersulphone (PES) and polyvinylidene fluoride (PVDF) materials based membranes were used for this study. The chemical cleaning of the membranes was performed by immersion of the membranes into 1 N HCl followed by adding 3000 mg.L-1 NaOCl for 1hr. Degradation and filtration performance was evaluated using Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) and total organic carbon (TOC) analysis. Membrane fouling analysis for assessing the comparative performance of PES and PVDF membranes was determined by specific fouling and fouling indices evaluation. Membrane characterization results show that the alkynes and carbonyl group formation are due to dehydrofluorination and oxidation of PVDF and PES membranes under the attack of foulants and cleaning chemicals, which resulted in a reduction of fluoride percentage and an increase in sulfur percentage in the PVDF and PES membranes. A decrease in the hydrophilicity of the membranes in underexposed conditions was observed and is consistent with an increase in dose. Degradation results of CECs follow with the highest removal efficiency of chlortetracycline (CTC) followed by atenolol (ATL), acetaminophen (ACT), and caffeine (CAF) degradation due to attack on the aromatic ring and the carbonyl group of CECs by OH exposure. Membrane exposed at 3 mg.L-1 dose of UV/H2O2-based CECs shows minimum alteration with higher filtration efficiency and lower fouling, particularly in PES membranes.


Asunto(s)
Peróxido de Hidrógeno , Agua , Cromatografía Liquida , Membranas Artificiales , Espectrometría de Masas en Tándem
10.
Front Chem ; 11: 1295455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053671

RESUMEN

Hydrogen production via chemical looping steam methane reforming (CL-SMR) is among the most promising current technologies. This work presents the development in gPROMS Model Builder 4.1.0® of a 1D model of an adiabatic packed bed reactor used for chemical looping reforming (CLR). The catalyst used for this process was 18 wt. % NiO with the support of Al2O3. A brief thermodynamic analysis using Chemical Equilibrium Application (CEA) was carried out to identify the optimum operating conditions. The model was simulated for 10 complete CL-SMR cycles. The effects of variations in temperature, pressure, gas mass velocity, nickel oxide concentration, reactor length, and particle diameter were studied to investigate the performance of the CL-SMR process under these variations. A parametric analysis was carried out for different ranges of conditions: temperatures from 600 to 1,000 K, pressure from 1 to 5 bar, gas mass velocity between 0.5 and 0.9 kg·m-2 s-1, nickel oxide concentration values between 0.1 and 1 mol·m-3, particle diameters between 0.7 and 1 mm, and fuel reactor (FR) lengths between 0.5 and 1.5 m. At the optimum temperature (950 K), pressure (1 bar), and steam-to-carbon molar ratio (3/1), with an increase in particle diameter from 0.7 to 1 mm, an 18% decrease in methane conversion and a 9.5% increase in hydrogen yield were observed. Similarly, with an increase in FR length from 0.5 m to 1.5 m, a delay in the temperature drop was observed.

11.
Chemosphere ; 302: 134813, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35526680

RESUMEN

The goal of this study was to evaluate the impact of thermal and chemical aging processes on high-density polyethylene (HDPE), low-density polyethylene (LDPE), unplasticized polyvinyl chloride (U-PVC), and high-impact polyvinyl chloride (Hi-PVC) pipes. The materials were exposed to 1-10 ppm chemical disinfectants [chlorine dioxide (ClO2) and hypochlorite (HOCl)] at 40-80 °C for 1200 h. The diffusion properties of the materials were systematically analyzed based on the change in their sorption characteristics and activation energies according to the Arrhenius model. Moreover, the structural changes were analyzed with scanning electron microscopy (SEM), Fourier transform infrared (FTIR) radiation, and thermogravimetric analysis (TGA). The results show that the materials have Fickian characteristics in the aging environment. Specifically, the water sorption rates of HDPE and LDPE increase first and then decrease after reaching saturation (Ms); those of U-PVC and Hi-PVC its increasing continuously with different rate. This behavior of materials was prominent for ClO2 at high temperature and disinfectant dose because of polymeric chains crosslinking and rearrangement, extraction of monomers, and stable compounds removal during aging under exposed conditions. The deleterious effects decreased the activation energies of the materials and increased the concentrations of carbonyl groups [CO] via the formation of ketones, aldehydes, and carboxylic acids. The decomposition temperature increased with the changes in the material morphology and elemental contents under the investigated conditions. Moreover, LDPE and Hi-PVC were more severely affected in the thermal aging process with 10 mg.L-1 ClO2 at 80 °C.


Asunto(s)
Desinfectantes , Desinfectantes/toxicidad , Microscopía Electrónica de Rastreo , Polietileno/química , Cloruro de Polivinilo/química , Temperatura
12.
Chemosphere ; 291(Pt 1): 132669, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34710447

RESUMEN

Addition of chlorine dioxide (ClO2) or sodium hypochlorite (NaOCl) as a disinfectant in municipal water distribution systems is a common practice to deactivate micropollutants, but their impact on the pipe material with long-term exposure has not been discussed in detail. In this study, accelerated aging experiments were conducted for evaluating the oxidation of high-density polyethylene (HDPE), low-density polyethylene (LDPE), unplasticized polyvinylidene chloride (UPVC), and high-impact polyvinylidene chloride (Hi-PVC) pipes. The pipes were immersed in deionized (DI) water, ClO2, and NaOCl (2 mg/L, 5 mg/L, and 10 mg/L doses) for 1200 h of aging at 40 °C. The variations in the pipes structural, thermal, and mechanical characteristics were systematically investigated by attenuated total reflectance-Fourier transform infrared radiation (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The formation of carbonyl groups due to methylene groups (C-C/C-H) oxidation resulted in an increased carbonyl index (CI) of the material exposed to accelerated aging conditions. Moreover, the XPS and ATR-FTIR results elucidated that the oxidation patterns under the exposure conditions followed from ketone/aldehyde formation to carboxylate groups (carboxylic acid/ester). The pipes were more vulnerable to the ClO2 compared to the DI water and NaOCl solution exposure. The increase in crystallinity and the decrease in oxidation induction time (OIT) of the pipe materials confirmed that the loss of stabilizer and changes in the chain alignment resulted in chain secession, loss of ductility, and lower percent elongation at break. Furthermore, results also elucidated that oxidative stability of the HDPE/UPVC was greater than that of the LDPE/Hi-PVC under disinfectant exposure regardless of the concentration and duration.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Polietileno , Agua , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
13.
J Hazard Mater ; 400: 123212, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947743

RESUMEN

This study investigated the potential for reducing scaling during chemical cleaning of polyvinylidene fluoride membranes by optimizing preoxidation dose and pH. Membranes were fouled by a solution containing inorganic foulants (aluminum, iron, and manganese), humic acid, and kaolin at a Ca+2 strength of 0.5 mM and varying the preoxidation dose. Energy-dispersive spectroscopy was used to verify the presence of inorganic foulants after cleaning. Fourier-transform infrared spectroscopy revealed changes in CCl and C-F functional groups, with bond vibrations at 542 cm-1 and 1199 cm-1, respectively. Minimum irreversible fouling of 5.4% and maximum flux recovery of 88.8% of the initial value were associated with a preoxidation dose of 1.5 mg/L and pH 8.5. A decrease in amount of aluminum from 5.79 ± 0.021 mg to 3.85 ± 0.054 mg in the presence of humic acid with a removal efficiency greater than 60% was due to alteration of the feed solution, as revealed by mass-balance analysis. Membrane characterization and fouling reversibility analysis confirmed that preoxidation of the feed solution produced less scaling during chemical cleaning. The cake layer fouling contribution was determined by fitting results of Hermia's fouling model analysis, with 1.34-1.85 times lower total fouling indices and 3-5.5 times lower chemically irreversible fouling indices at pH 8.5 and a preoxidation dose of 1.5 mg/L.

14.
Chemosphere ; 259: 127328, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32610174

RESUMEN

This study investigates five different fouling models and contributing factors in membrane-filtration blocking mechanisms in a constant-pressure mode. A polyvinylidene fluoride membrane was used to study the fouling effects of a complex mixture of foulants (a latex-bed suspension, soybean oil, and inorganics) on pristine and chemically cleaned membranes in the presence of humic acid. A significance ratio in linear regression results (p-value) was used to assess the contribution of fouling mechanism in each model. The results indicate that Hermia and Bowen's models correspond closely with the experiment results and confirms that complete blocking is dominant fouling model. We also verify that each developed model is dependent on its experimental conditions. Moreover, the role of complex mixtures, including inorganic foulants, in the fouling process needs to be modified as modified for ceramic membranes and natural organic matter removal in the Wiesner and Kilduff models, respectively.


Asunto(s)
Incrustaciones Biológicas , Membranas Artificiales , Purificación del Agua/métodos , Cerámica , Filtración/métodos , Sustancias Húmicas , Fenómenos Físicos
15.
Chemosphere ; 237: 124398, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31376692

RESUMEN

The goal of this study was to identify the scaling from the chemical cleaning of a polyvinylidene fluoride (PVDF) membrane, fouled by treating a solution containing inorganic foulants (Al, Fe, and Mn) in the presence of kaolin and humic acid as a natural organic matter at Ca+2 strength of 0.5 mMole. Chemical cleaning of the membrane was conducted using solutions prepared in deionized water and permeate water (PW), and the accumulation of insoluble salts on the membrane during cleaning were evaluated. Energy dispersive spectroscopy analysis was used to verify the presence inorganic foulants, and field emission scanning electron microscopy confirmed the changes in membrane symmetry from the accumulation of the foulants. A Fourier-transformed infrared spectroscopy analysis indicated the presence of new functional groups, i.e., C-Cl and C-O with bond vibrations at 542 cm -1 and 1,026 cm-1, respectively, on the membrane surface. The adsorbed mass of HA in the presence of inorganic foulants decreased from 3.54 ±â€¯0.045 mg to 2.24 ±â€¯0.095 mg and 1.71 ±â€¯0.075 mg, and the flux recoveries decreased from 93.2% to 85.69% and 81.92%, for the pristine to chemically DI and PW cleaned membrane, respectively. However, the membrane characterization results confirmed that Al was the major contributor to the accumulation of inorganic salts on the membrane during chemical cleaning and its role was more severe in the presence of Mn. The fitting results of Hermia's fouling models and a specific fouling analysis confirmed the contribution of complete blocking model with increase in irreversible fouling was observed after chemical cleaning.


Asunto(s)
Incrustaciones Biológicas , Membranas Artificiales , Purificación del Agua/métodos , Adsorción , Sustancias Húmicas/efectos adversos , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Ultrafiltración/métodos , Contaminantes del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA