Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697337

RESUMEN

BACKGROUND: The Multi-Omics for Mothers and Infants consortium aims to improve birth outcomes. Preterm birth is a major obstetrical complication globally and causes significant infant and childhood morbidity and mortality. OBJECTIVE: We analyzed placental samples (basal plate, placenta or chorionic villi, and the chorionic plate) collected by the 5 Multi-Omics for Mothers and Infants sites, namely The Alliance for Maternal and Newborn Health Improvement Bangladesh, The Alliance for Maternal and Newborn Health Improvement Pakistan, The Alliance for Maternal and Newborn Health Improvement Tanzania, The Global Alliance to Prevent Prematurity and Stillbirth Bangladesh, and The Global Alliance to Prevent Prematurity and Stillbirth Zambia. The goal was to analyze the morphology and gene expression of samples collected from preterm and uncomplicated term births. STUDY DESIGN: The teams provided biopsies from 166 singleton preterm (<37 weeks' gestation) and 175 term (≥37 weeks' gestation) deliveries. The samples were fixed in formalin and paraffin embedded. Tissue sections from these samples were stained with hematoxylin and eosin and subjected to morphologic analyses. Other placental biopsies (n=35 preterm, 21 term) were flash frozen, which enabled RNA purification for bulk transcriptomics. RESULTS: The morphologic analyses revealed a surprisingly high rate of inflammation that involved the basal plate, placenta or chorionic villi, and the chorionic plate. The rate of inflammation in chorionic villus samples, likely attributable to chronic villitis, ranged from 25% (Pakistan site) to 60% (Zambia site) of cases. Leukocyte infiltration in this location vs in the basal plate or chorionic plate correlated with preterm birth. Our transcriptomic analyses identified 267 genes that were differentially expressed between placentas from preterm vs those from term births (123 upregulated, 144 downregulated). Mapping the differentially expressed genes onto single-cell RNA sequencing data from human placentas suggested that all the component cell types, either singly or in subsets, contributed to the observed dysregulation. Consistent with the histopathologic findings, gene ontology analyses highlighted the presence of leukocyte infiltration or activation and inflammatory responses in both the fetal and maternal compartments. CONCLUSION: The relationship between placental inflammation and preterm birth is appreciated in developed countries. In this study, we showed that this link also exists in developing geographies. In addition, among the participating sites, we found geographic- and population-based differences in placental inflammation and preterm birth, suggesting the importance of local factors.

2.
Environ Sci Pollut Res Int ; 31(16): 23591-23609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418792

RESUMEN

Arsenic (As)-induced environmental pollution and associated health risks are recognized on a global level. Here the impact of cotton shells derived biochar (BC) and silicon-nanoparticles loaded biochar (nano-Si-BC) was explored on soil As immobilization and its phytotoxicity in barley plants in a greenhouse study. The barley plants were grown in a sandy loam soil with varying concentrations of BC and nano-Si-BC (0, 1, and 2%), along with different levels of As (0, 5, 10, and 20 mg kg-1). The FTIR spectroscopy, SEM-EDX, and XRD were used to characterize BC and nano-Si-BC. Results revealed that As treatment had a negative impact on barley plant development, grain yield, physiology, and anti-oxidative response. However, the addition of nano-Si-BC led to a 71% reduction in shoot As concentration compared to the control with 20 mg kg-1 of As, while BC alone resulted in a 51% decline. Furthermore, the 2% nano-Si-BC increased grain yield by 94% compared to control and 28% compared to BC. The addition of 2% nano-Si-BC to As-contaminated soil reduced oxidative stress (34% H2O2 and 48% MDA content) and enhanced plant As tolerance (92% peroxidase and 46% Ascorbate peroxidase activity). The chlorophyll concentration in barley plants decreased due to oxidative stress. Additionally, the incorporation of 2% nano-Si-BC resulted in a 76% reduction in water soluble and NaHCO3 extractable As. It is concluded that the use of BC or nano-Si-BC in As contaminated soil for barley resulted in a low human health risk (HQ < 1), as it effectively immobilized As and promoted higher activity of antioxidants.


Asunto(s)
Arsénico , Hordeum , Nanopartículas , Contaminantes del Suelo , Humanos , Silicio/análisis , Arsénico/análisis , Hordeum/metabolismo , Suelo/química , Peróxido de Hidrógeno/análisis , Antioxidantes/metabolismo , Carbón Orgánico/química , Grano Comestible/química , Contaminantes del Suelo/análisis
3.
Lancet Reg Health Southeast Asia ; 20: 100299, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234701

RESUMEN

Background: Wastewater-based surveillance is used to track the temporal patterns of the SARS-CoV-2 virus in communities. Viral RNA particle detection in wastewater samples can indicate an outbreak within a catchment area. We describe the feasibility of using a sewage network to monitor SARS-CoV-2 trend and use of genomic sequencing to describe the viral variant abundance in an urban district in Karachi, Pakistan. This was among the first studies from Pakistan to demonstrate the surveillance for SARS-CoV-2 from a semi-formal sewage system. Methods: Four sites draining into the Lyari River in District East, Karachi, were identified and included in the current study. Raw sewage samples were collected early morning twice weekly from each site between June 10, 2021 and January 17, 2022, using Bag Mediated Filtration System (BMFS). Secondary concentration of filtered samples was achieved by ultracentrifugation and skim milk flocculation. SARS-CoV-2 RNA concentrations in the samples were estimated using PCR (Qiagen ProMega kits for N1 & N2 genes). A distributed-lag negative binomial regression model within a hierarchical Bayesian framework was used to describe the relationship between wastewater RNA concentration and COVID-19 cases from the catchment area. Genomic sequencing was performed using Illumina iSeq100. Findings: Among the 151 raw sewage samples included in the study, 123 samples (81.5%) tested positive for N1 or N2 genes. The average SARS-CoV-2 RNA concentrations in the sewage samples at each lag (1-14 days prior) were associated with the cases reported for the respective days, with a peak association observed on lag day 10 (RR: 1.15; 95% Credible Interval: 1.10-1.21). Genomic sequencing showed that the delta variant dominated till September 2022, while the omicron variant was identified in November 2022. Interpretation: Wastewater-based surveillance, together with genomic sequencing provides valuable information for monitoring the community temporal trend of SARS-CoV-2. Funding: PATH, Bill & Melinda Gates Foundation, and Global Innovation Fund.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA