Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): 708-723, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38000366

RESUMEN

Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.


Asunto(s)
Proteínas Bacterianas , Replicación del ADN , Proteína Reguladora de Respuesta a la Leucina , Vibrio cholerae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteína Reguladora de Respuesta a la Leucina/metabolismo
2.
Nucleic Acids Res ; 50(8): 4529-4544, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35390166

RESUMEN

Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.


Asunto(s)
Vibrio cholerae , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Humanos Par 2/metabolismo , ADN/metabolismo , Replicación del ADN , Dimerización , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plásmidos , Origen de Réplica/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
3.
Artif Life ; 24(4): 250-276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30681914

RESUMEN

Digital evolution is a computer-based instantiation of Darwinian evolution in which short self-replicating computer programs compete, mutate, and evolve. It is an excellent platform for addressing topics in long-term evolution and paleobiology, such as mass extinction and recovery, with experimental evolutionary approaches. We evolved model communities with ecological interdependence among community members, which were subjected to two principal types of mass extinction: a pulse extinction that killed randomly, and a selective press extinction involving an alteration of the abiotic environment to which the communities had to adapt. These treatments were applied at two different strengths, along with unperturbed control experiments. We examined how stability in the digital communities was affected from the perspectives of division of labor, relative shift in rank abundance, and genealogical connectedness of the community's component ecotypes. Mass extinction that was due to a Strong Press treatment was most effective in producing reshaped communities that differed from the pre-treatment ones in all of the measured perspectives; weaker versions of the treatments did not generally produce significant departures from a Control treatment; and results for the Strong Pulse treatment generally fell between those extremes. The Strong Pulse treatment differed from others in that it produced a slight but detectable shift towards more generalized communities. Compared to Press treatments, Pulse treatments also showed a greater contribution from re-evolved ecological doppelgangers rather than new ecotypes. However, relatively few Control communities showed stability in any of these metrics over the whole course of the experiment, and most did not represent stable states (by some measure of stability) that were disrupted by the extinction treatments. Our results have interesting, broad qualitative parallels with findings from the paleontological record, and show the potential of digital evolution studies to illuminate many aspects of mass extinction and recovery by addressing them in a truly experimental manner.


Asunto(s)
Biota , Simulación por Computador , Extinción Biológica , Evolución Biológica , Modelos Biológicos , Paleontología
4.
J Surg Case Rep ; 2017(6): rjw224, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28616153

RESUMEN

Gorlin-Goltz syndrome (GGS) is a rare genetic syndrome with variable expressivity and autosomal dominant inheritance. The major features of GGS include numerous basal cell carcinomas (BCCs), keratocysts of the jaw, palmar/plantar pits and calcification of the falx cerebri. Authors report the case of a 51-year-old male with a 19-year history of GGS and multiple BCCs of the head and neck. He presented with a large ulcerating lesion on the right side of his face involving cutaneous, subcutaneous and muscular tissues of the temporal and orbital region. Additionally, magnetic resonance imaging revealed involvement of the right zygomatic bone, infratemporal fossa and mandible. This case is notable in that BCC invasion of the facial bones is rare. Extensive resection and reconstruction with a latissimus dorsi microvascular free muscle flap was performed. The success of this challenging case exemplifies the need for a multidisciplinary team that included dermatology, plastic surgery, oculoplastics and otolaryngology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA