Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 19(9): 6433-6442, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28140414

RESUMEN

The alkyl chain length of trioctylalkylammonium bis(salicylato)borates (N888n-BScB; n = 6, 8, 10 and 12) was varied to prepare a series of room-temperature ionic liquids, and then their viscosity and rheological properties were investigated. Besides the omnipresent Coulombic interactions, other interactive forces such as van der Waals interactions, hydrogen bonding, inductive forces, dipole-dipole interactions, etc., collectively determine the physicochemical properties of N888n-BScB ionic liquids. The van der Waals interactions and structural geometry of the ammonium cation (N888n) primarily organized the packing orientation of N888n-BScB ionic liquids and controlled their viscosity and rheological properties as a function of the alkyl chain length. The symmetric cation (N8888) increased the viscosity owing to closer packing driven by van der Waals interactions. The N888n-BScB ionic liquids exhibited non-Newtonian shear thinning behaviour. Furthermore, the decrease in viscosity at higher shear rates indicated that interactive forces in the N888n-BScB ionic liquids were disrupted. These ionic liquids, as lubricants, exhibited significantly lower friction (40-50%) and wear (45-69%) in comparison to PEG 300 synthetic lubricating oil. The degrees of reduction in friction and wear were largely influenced by the chain length of the alkyl group. The N888n-BScB ionic liquids with longer alkyl chains were strongly adsorbed on sliding surfaces and provided better lubrication properties than those with shorter alkyl chains. As a result, the coefficients of friction and wear were decreased by increasing the chain length in N888n-BScB ionic liquids. The tribologically induced adsorption of the BScB anion on metal surfaces, electrostatic interactions between ions, the compact and rigid structure of the BScB anion and van der Waals interactions provided by longer alkyl chains in the N888n cation collectively formed a tribochemical thin film of low shear strength, which resulted in a reduction in friction and the avoidance of direct contact between the aluminium and steel tribopair.

2.
Phys Chem Chem Phys ; 18(33): 22879-88, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27484045

RESUMEN

Hexagonal boron nitride nanoplatelets (h-BNNPs), which are structurally analogous to graphene, were prepared via the ultrasound-assisted exfoliation of h-BN powder using N-methyl pyrrolidone as the solvent. The alkylamines with variable alkyl chains and electron-rich nitrogen atoms were grafted onto the boron sites of the h-BNNPs based on Lewis acid-base chemistry. The grafting of the alkylamines onto the h-BNNPs was confirmed using FTIR, XPS, TGA and (13)C SSNMR analyses. The crystalline and structural features of the alkylamine-functionalized h-BNNPs were studied using XRD and HRTEM analyses. The TGA and FTIR results revealed a higher grafting of octadecylamine (ODA) on the h-BNNPs compared to trioctylamine (TOA). The cohesive interaction between the alkyl chains grafted onto the h-BNNPs and the hydrocarbon chains of mineral lube base oil facilitates the dispersion of the alkylamine-functionalized h-BNNPs. The TOA-grafted h-BNNPs (h-BNNPs-TOA) exhibited long-term dispersion stability compared to the ODA-grafted h-BNNPs and this was attributed to a higher degree of van der Waals interactions between the octyl chains of the TOA molecules grafted onto the h-BNNPs and the hydrocarbon chains of the mineral lube base oil. The tribo-performance of the h-BNNPs-TOA as an additive to mineral lube base oil was evaluated in terms of the coefficient of friction and wear using ball-on-disc contact geometry. A minute dosing (0.02 mg mL(-1)) of h-BNNPs-TOA significantly improved the lubrication characteristics of the mineral lube base oil and showed a 35 and 25% reduction of friction and wear, respectively. The presence of boron and nitrogen on the worn scar of an aluminium disc, as deduced from elemental mapping, confirmed the formation of a tribo-chemical thin film of h-BN lamellae on the contact interfaces, which not only reduced the friction but also protected the contact interfaces against undesirable wear events.

3.
Chemistry ; 21(8): 3488-94, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25537229

RESUMEN

The octahedral molybdenum cluster-based compound, Cs2 Mo6 Br(i) 8 Br(a) 6 was immobilized on graphene oxide (GO) by using a facile approach. High resolution transmission electron microscopy results revealed that molybdenum clusters were uniformly distributed on the GO nanosheets. Cs2 Mo6 Br(i) 8 Br(a) 6 was attached to the GO support via chemical interaction between apical ligands of Mo6 Br(i) 8 Br(a) 6 cluster units and oxygen functionalities of GO, as revealed by XPS studies. The developed material was used for the synthesis of dimethyl carbonate by reduction of carbon dioxide. The synthesized catalyst, that is, GO-Cs2 Mo6 Br(i) 8 Br(a) x , exhibited higher catalytic efficiency than its homogeneous analogue without using dehydrating agent. The catalyst was found to be efficiently recyclable without significant loss of catalytic activity.

4.
Phys Chem Chem Phys ; 17(32): 20822-9, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26214400

RESUMEN

n-Alkylamines were grafted on the basal plane oxygen functionalities of graphene oxide (GO), yielding molecular pillar supported graphene oxide frameworks (GOFs) with tunable interlayer spacing. A major fraction of n-alkylamines was found to covalently interact with the basal plane epoxy groups via nucleophilic substitution reactions. The d-spacing in GOFs could be tailored between 10.5 and 28.9 Å by varying the chain length of the n-alkylamines. (13)C SSNMR explicitly showed the coexistence of both trans and gauche conformation modes. The relative populations of these modes control the conformational heterogeneity and orientation of n-alkylamines in the GOFs. A plausible bilayer structural model of the GOFs was demonstrated. The terminal methyl and methylene units of the n-alkylamines grafted on the GO basal plane were interdigitated with the counter layer and afforded a double-layer structure of alkyl chain supported GOFs.

5.
Environ Sci Pollut Res Int ; 31(6): 8719-8735, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182948

RESUMEN

Hexavalent chromium oxyanions, known as potentially toxic micropollutants, exist in the effluents and discharges of metallurgical, electroplating, refractory, chemical, and tanning industries. The exposure of chromium-contaminated water causes severe health hazards. The present work outlines a facile approach to grow polyaniline (PANI) on fruit-waste-derived cellulose (CEL) via oxidative polymerization of aniline; followed by chemical processing with NH4OH to obtain CEL-PANI-EB composites for adsorptive separation-coupled reduction of highly toxic hexavalent chromium oxyanions. The spectroscopic analyses of the CEL-PANI-EB composite before and after adsorption of Cr(VI) oxyanions revealed hydrogen bonding, electrostatic, and complexation as major interactive pathways. The adsorbed hexavalent chromium oxyanions are reduced into Cr(III) species by oxidation of PANI-based benzenoid amine into quinoid imine in the CEL-PANI-EB composite. The adsorption of Cr(VI) oxyanions by the CEL-PANI-EB composite showed negligible effects of other anionic co-pollutants, like NO3- and SO42-. The CEL-PANI-EB composite adsorbed Cr(VI) oxyanions with a removal capacity of 469 mg g-1, based on the Langmuir adsorption isotherm model. The hydroxyl functionalities in cellulose and amine/imine functionalities in PANI facilitate the electrostatic attraction between the CEL-PANI-EB and Cr(VI) oxyanions in an acidic environment beside the hydrogen linkages. The adsorbed Cr(VI) oxyanions are reduced to Cr(III)-based species by the benzenoid amines of PANI, as revealed from the XPS analyses. The CEL-PANI-EB composite showed excellent recyclability and maintained 83.4% adsorption efficiency after seven runs of chromium adsorption-desorption. The current findings reveal the potential of CEL-PANI-EB composites for the adsorptive removal of Cr(VI) oxyanions and their conversion into a lesser toxic form, making them promising materials for wastewater treatment applications.


Asunto(s)
Celulosa , Contaminantes Químicos del Agua , Celulosa/química , Frutas/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cromo/química , Compuestos de Anilina/química , Iminas , Cinética , Concentración de Iones de Hidrógeno
6.
Chemosphere ; 337: 139318, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392797

RESUMEN

A sustainable management of carcinogenic polycyclic aromatic hydrocarbons (PAHs) to synthesize a series of high surface area (SABET of 563-1553 m2 g-1) microporous polymeric adsorbents is reported. The products with high yield (>90%) were obtained within only 30 min at a low temperature of 50 °C using a microwave-assisted approach with 400 W microwave power followed by 30 min of ageing by raising the temperature to 80 °C. The synthesized adsorbents are used for removing another category of carcinogenic pollutants i.e., polycyclic aromatic sulphur heterocycles (PASHs) from model and real fuels. Adsorptive desulphurization experiment in batch mode could reduce the sulphur from high concentrated model (100 ppm) and real (102 ppm) fuels to 8 ppm and 45 ppm respectively. Similarly, desulphurization of model and real fuels with ultralow sulphur concentrations of 10 and 9 ppm, respectively, reduced the final concentration of sulphur to 0.2 and 3 ppm, respectively. Adsorption isotherms, kinetics, and thermodynamic studies have been conducted using batch mode experiments. Adsorptive desulphurization using fixed bed column studies show the breakthrough capacities of 18.6 and 8.2 mgS g-1, for the same high concentrated model and real fuels, respectively. The breakthrough capacities of 1.1 and 0.6 mgS g-1 are estimated for the ultralow sulphur model and real fuels, respectively. The adsorption mechanism, based on the spectroscopic analysis (FTIR and XPS) demonstrates the role of π-π interactions between the adsorbate and adsorbent. The adsorptive desulphurization studies of model and real fuels from batch to fixed bed column mode would offer an in-depth understanding to demonstrate the lab-scale findings for industrial applications. Thus, the present sustainable strategy could manage two classes of carcinogenic petrochemical pollutants, PAHs and PASHs, simultaneously.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Adsorción , Polímeros , Azufre/análisis , Contaminantes Ambientales/análisis
7.
Chemosphere ; 308(Pt 3): 136433, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36126740

RESUMEN

Present work addresses the synthesis of microporous activated carbon (SDAC) by a facile thermochemical conversion of teak sawdust powder. The high surface area (1999 m2 g-1), excellent microporosity (average pore size: 2.62 nm), and turbostratic carbon structure with intertwined graphitic domains make SDAC a highly efficient adsorptive material for the removal of organic pollutants. The spectroscopic analyses (FTIR, Raman, and XPS) and adsorption locator calculations revealed multiple interactions between organic dyes and SDAC adsorbent, i.e., electrostatic, π-π, n-π interactions, and hydrogen linkages. The size, chemical functionalities, aromatic rings, electronegative and heteroatoms in dye molecules, along with the surface-active sites, microstructured and textural features of SDAC adsorbent collectively governed the interaction pathways and adsorption efficiency. The calculated adsorption energy using Monte Carlo-based simulation annealing method signified faster and higher adsorption of malachite green than methylene blue dye at surface-active sites (-COOH, CO, C-OH, and π-electron-rich domains) of SDAC adsorbent, corroborating the experimental results. The batch-mode adsorptive separation results showed remarkably high adsorption efficiency (>99%) for industrial wastewater to remove cationic and anionic dyes together. The SDAC displayed significantly high adsorption of methylene blue dye (625 mg.g-1) with excellent recyclability without measurable loss of adsorption efficiency even after ten cycles. The SDAC fixed-bed column showed a dye removal capacity of 594 mg.g-1 at 90% breakthrough in a continuous-mode process signifying its applicability for a real-time industrial run. The excellent conformity between batch mode and fixed bed continuous column adsorption data, along with higher removal capacity and remarkable recyclability, promise the use of SDAC adsorbent for industrial wastewater treatment to remove multiple organic pollutants.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Dominio Catalítico , Carbón Orgánico , Colorantes , Hidrógeno/análisis , Cinética , Azul de Metileno/química , Polvos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
8.
J Colloid Interface Sci ; 608(Pt 3): 2870-2883, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34802756

RESUMEN

A wide range of organic pollutants in industrial effluents, agricultural runoff, and domestic discharges are exacerbating water scarcity, leading to water-borne ailments, and adversely affecting the marine ecosystem and biodiversity. The efficient, sustainable, and cost-effective materials need to be addressed urgently for the removal of organic pollutants. Herein, ultra-light (0.018 g.cm-3) and highly porous (96.4%) composite aerogel is prepared by gelatinization of graphene oxide with fruit waste-derived cellulose. The macroscopic porosity generated by interconnecting cellulosic skeleton and graphene oxide sheets via hydrogen bonding network provided ample avenues for transport and diffusion of organic dyes-enriched wastewater throughout the cellulose-graphene oxide composite aerogel (CGA). Consequently, organic dyes are efficiently adsorbed by easily accessible surface sites distributed throughout the CGA. The size, charge, and chemical structure of organic dyes along with textural features and accessible surface active sites of CGA governed the adsorption process. The spectroscopic analyses based on FTIR, Raman, and XPS measurements suggest electrostatic, n-π, π-π, cation-π interactions, dipole-dipole hydrogen, and Yoshida hydrogen linkages as major interactive pathways for the adsorption of organic dyes by the CGA. Moreover, the composite aerogel furnished an excellent recyclability for the adsorptive removal of organic pollutants from wastewater. The present work promises the potential of 2D nanostructured layered materials and fruit-waste-derived composite aerogels for sustainable utilization in wastewater treatment, which can be an excellent step towards water security.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Adsorción , Celulosa , Colorantes , Ecosistema , Frutas/química , Contaminantes Químicos del Agua/análisis
9.
J Colloid Interface Sci ; 607(Pt 2): 1973-1985, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34695746

RESUMEN

A facile approach is presented to synthesize the ionic liquid-grafted graphene oxide (GO-ImOH) for fast and efficient adsorptive removal of cationic dyes. A coupling reaction between the hydroxyl terminal of imidazolium ionic liquid and the carboxylic group of GO, yielded the GO-ImOH hybrid material. The higher surface negative charge (-32 mV) and excellent dispersibility make the GO-ImOH an efficient adsorbent for cationic dyes. The GO-ImOH showed excellent removal efficiency for methylene blue (cationic dye), whereas it could adsorb only 22% methyl orange (anionic dye). The GO-ImOH displayed significantly higher adsorptive removal capacity for cationic dye compared to that of GO adsorbent. The chemical and structural features of GO-ImOH and spectroscopic analyses (FTIR and Raman) of pristine and recovered GO-ImOH adsorbent suggested multiple adsorptive interaction pathways (electrostatic, π-cation, π-π interactions, and hydrogen linkages) between the GO-ImOH adsorbent and the dye molecules. The work paves a new direction for the development of ionic liquids-modified 2D nanomaterials for efficient and fast adsorptive removal of organic pollutants, where the adsorptive sites on the surface of 2D nanomaterials can be tuned by selecting the desired functionalities from a diversified library of cations and anions of ionic liquids.


Asunto(s)
Grafito , Líquidos Iónicos , Contaminantes Químicos del Agua , Adsorción , Colorantes , Contaminantes Químicos del Agua/análisis
10.
ACS Appl Mater Interfaces ; 14(1): 1334-1346, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34941265

RESUMEN

Tungsten disulfide (WS2) exhibits intriguing tribological properties and has been explored as an excellent lubricious material in thin-film and solid lubricants. However, the poor dispersibility of WS2 has been a major challenge for its utilization in liquid lubricant applications. Herein, a top-down integrated approach is presented to synthesize oxygenated WS2 (WS2-O) nanosheets via strong acid-mediated oxidation and ultrasound-assisted exfoliation. The ultrathin sheets of WS2-O, comprising 4-7 molecular lamellae, exhibit oxygen/hydroxyl functionalities. The organosilanes having variable surface-active leaving groups (chloro and ethoxy) are covalently grafted, targeting the hydroxyl/oxygen functionalities on the surface of WS2-O nanosheets. The grafting of organosilanes is governed by the reactivity of chloro and ethoxy leaving groups. The DFT calculations further support the covalent interaction between the WS2-O nanosheets and organosilanes. The alkyl chain-functionalized WS2-O nanosheets displayed excellent dispersibility in mineral lube base oil. A minute dose of chemically functionalized-WS2 (0.2 mg.mL-1) notably enhanced the tribological properties of mineral lube oil by reducing the friction coefficient (52%) and wear volume (79%) for a steel tribopair. Raman analysis of worn surfaces revealed WS2-derived lubricious thin film formation. The improved tribological properties are attributed to ultralow thickness, stable dispersion, and low shear strength of chemically functionalized WS2 nanosheets, along with protective thin film formation over the contact interfaces of a steel tribopair. The present work opens a new avenue toward exploiting low-dimensional nanosheets for minimizing energy losses due to high friction.

11.
Adv Colloid Interface Sci ; 283: 102215, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32771691

RESUMEN

Graphene, the most promising material of the decade, has attracted immense interest in a diversified range of applications. The weak van der Waals interaction between adjacent atomic-thick lamellae, excellent mechanical strength, remarkable thermal conductivity, and high surface area, make graphene a potential candidate for tribological applications. However, the use of graphene as an additive to liquid lubricants has been a major challenge because of poor dispersibility. Herein, a thorough review is presented on preparation, structural models, chemical functionalization, and dispersibility of graphene, graphene oxide, chemically-functionalized graphene, and graphene-derived nanocomposites. The graphene-based materials as additives to water and lubricating oils improved the lubrication properties by reducing the friction, protecting the contact interfaces against the wear, dissipating the heat from tribo-interfaces, and mitigating the corrosion by forming the protecting thin film. The dispersion stability, structural features, and dosage of graphene-based dispersoids, along with contact geometry, play important roles and govern the tribological properties. The chemistry of lubricated surfaces is critically reviewed by emphasizing the graphene-based thin film formation under the tribo-stress, which minimizes the wear. The comprehensive review provides variable approaches for the development of high-performance lubricant systems and accentuates the lubrication mechanisms by highlighting the role of graphene-based materials for enhancement of tribological properties.

12.
ACS Appl Mater Interfaces ; 12(46): 51785-51796, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33151673

RESUMEN

The present investigation demonstrates a green and scalable chemical approach to prepare aminoborate-functionalized reduced graphene oxide (rGO-AmB) for aqueous lubricants. The chemical, structural, crystalline, and morphological features of rGO-AmB are probed by XPS, FTIR, Raman, XRD, and HRTEM measurements. The spectroscopic analyses revealed the multiple interaction pathways between rGO and AmB. rGO-AmB exhibited long-term dispersion stability and improved the thermal conductivity of water by 68%. The thermal conductivity increased with increasing concentration of rGO-AmB and temperature. rGO-AmB as an additive to water (0.2%) enhanced the tribological properties of a steel tribopair under the boundary lubrication regime by the significant reduction in friction (70%) and wear (68%). The tribo-induced gradual deposition of an rGO-AmB-based thin film facilitated the interfacial sliding between the steel tribopair and protected it from the wear. The ultralow thickness, excellent dispersibility in water, high thermal conductivity, intrinsic low frictional properties, and good affinity toward the tribo-interfaces make rGO-AmB a potential candidate for aqueous lubricants.

13.
J Colloid Interface Sci ; 580: 730-739, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32712478

RESUMEN

Incommensurate stacking between two different types of two-dimensional layered materials furnished the weak interfacial interaction due to the mismatch of their lattice structure, which can be harnessed for development of new generation lubricant additives. Herein, a facile approach is presented to synthesize the ZnO-decorated reduced graphene oxide/MoS2 (Gr-MS-Zn) nanosheets. The Fourier transform infrared, X-ray photoelectron spectroscopic, Raman, and transmission electron microscopic analyses confirmed the preparation of Gr-MS-Zn heterostructure. The MoS2 nanosheets having 3-7 molecular lamellae are thoroughly distributed over the graphene skeleton via weak interfacial interaction. The curved and bent structure of MoS2 nanosheets grown over the graphene lamellae subsidized the cohesive interaction and furnished the stable dispersion of Gr-MS-Zn in the fully formulated engine oil. The minute dose of Gr-MS-Zn as a nano-additive to engine oil significantly enhanced the tribological performance between the steel-steel tribopair by decreasing the friction (37%) and the wear volume (87%). The microscopic and spectroscopic analyses revealed the formation of a Gr-MS-Zn-based surface protective tribo thin film of low shear strength. The enhanced tribo performance is collectively attributed to (a) uninterrupted supply of ultrathin Gr-MS-Zn nanosheets to tribo-interfaces, (b) stable dispersion of Gr-MS-Zn, and (c) the significantly low shear strength, arising from weak interfacial interaction between the incommensurately stacked graphene and MoS2 nanosheets.

14.
ACS Appl Mater Interfaces ; 12(27): 30720-30730, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32524815

RESUMEN

Two-dimensional transition-metal dichalcogenides possess inherent structural characteristics that can be harnessed for enhancement of tribological properties by making them dispersible in lube media. Here, we present a hydrothermal approach to preparing MoS2 nanosheets comprising 4-10 molecular lamellae. A structural-defect-mediated route for grafting of octadecylamine (ODA) on MoS2 nanosheets is outlined. The unsaturated d orbitals of Mo at the sulfur vacancies on the MoS2 surface are coupled with the electron-rich nitrogen center of ODA and yield ODA-functionalized MoS2 (MoS2-ODA). The MoS2-ODA nanosheets exhibit good dispersibility in lube base oil and are used as an additive (optimized dose: 0.1 mg·mL-1) to mineral oil. It is shown that even at low concentration, MoS2-ODA nanosheets significantly reduce the friction (48%) and wear (44%). Microscopy (field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM)) and spectroscopy (Raman and elemental mapping) analyses of worn scars revealed the formation of MoS2-based protective thin films for lowering of friction and wear. This work, therefore, presents a pathway for low-friction lubricants by deploying functionalized low-dimensional material systems.

15.
Adv Colloid Interface Sci ; 272: 102009, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31445351

RESUMEN

Metal oxide nanomaterials and their composites are comprehensively reviewed for water remediation. The controlled morphological and textural features, variable surface chemistry, high surface area, specific crystalline nature, and abundant availability make the nanostructured metal oxides and their composites highly selective materials for efficient removal of organic pollutants based on adsorption and photocatalytic degradation. A wide range of metal oxides like iron oxides, magnesium oxide, titanium oxides, zinc oxides, tungsten oxides, copper oxides, metal oxides composites, and graphene-metal oxides composites having variable structural, crystalline and morphological features are reviewed emphasizing the recent development, challenges, and opportunities for adsorptive removal and photocatalytic degradation of organic pollutants viz. dyes, pesticides, phenolic compounds, and so on. It also covers the deep discussion on the photocatalytic mechanism of metal oxides and their composites along with the properties relevant to photocatalysis. High photodegradation efficiency, economically-viable approaches for the preparation of photocatalytic materials, and controlled band-gap engineering make metal oxides highly efficient photocatalysts for degradation of organic pollutants. The review would be an excellent resource for researchers who are currently focusing on metal oxides-based materials for water remediation as well as for those who are interested in adsorptive and photocatalytic applications of metal oxides and their composites.

16.
J Colloid Interface Sci ; 541: 150-162, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30685610

RESUMEN

Alkylated graphene oxide (GO)/reduced graphene oxide (rGO) are prepared by covalent interaction with octadecyltrichlorosilane (OTCS) and octadecyltriethoxysilane (OTES). The variable oxygen functionalities in the GO/rGO and hydrolysis rate of octadecylsilanes having different leaving groups viz. trichloro and triethoxy found to govern the grafting density of octadecyl chains on the GO and rGO. FTIR, XPS, and TGA results revealed a higher grafting of octadecyl chains in the GO-OTCS, whereas the rGO-OTES exhibited minimum grafting. The van der Waals interaction between the octadecyl chain of alkylated GO/rGO and octadecenyl chains of polyol ester makes alkylated GO/rGO dispersible in the polyol lube base oil. The dispersion stability is collectively driven by grafting density of octadecyl chains and presence of oxygen functionalities in the GO/rGO. Tribological properties in terms of the coefficient of friction and wear scar diameter revealed a good correlation with the structure of alkylated GO/rGO and their dispersion stability in the polyol lube base oil. Raman analysis of the worn surface revealed the sheared-induced deposition of a graphene-based tribo-thin film, which reduced the friction and protected the tribo-interfaces against the wear.

17.
J Colloid Interface Sci ; 513: 666-676, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29207349

RESUMEN

Shear-induced transfer of graphene on the contact interfaces was studied by microscopic and spectroscopic analyses of steel balls lubricated with chemically functionalized graphene-based mineral lube base oil (SN-150). The 3,5-di-tert-butyl-4-hydroxybenzaldehyde (DtBHBA) grafted-graphene (Gr-DtBHBA) was prepared by two-steps approach using graphene oxide as a precursor. Chemical and structural features of Gr-DtBHBA are probed by FTIR, XPS, Raman, TGA, and HRTEM analyses. The van der Waals interaction between the tertiary-butyl group in the Gr-DtBHBA and hydrocarbon chains of mineral lube base oil facilitates the dispersion of Gr-DtBHBA in the SN-150 lube base oil, which is very important for the optimized performance of Gr-DtBHBA as a lubricant additive. The minute dosing (0.2-0.8 mg mL-1) of the Gr-DtBHBA in the SN-150 lube base oil showed the significant reduction in the coefficient of friction (40%) and wear scar diameter (17%) under the rolling contact between steel balls. The microscopic and EDX analysis of the worn area suggested the role of Gr-DtBHBA nanosheets for enhanced tribo-performance of the SN-150 lube base oil. A detailed Raman study of the worn area of steel ball revealed the deposition of a graphene-based tribo thin film in the forms of irregular patches. The shear-induced deposition of graphene thin film on the contact interfaces reduced the friction and protected the tribo-surfaces against the wear.

18.
J Colloid Interface Sci ; 501: 11-21, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28431217

RESUMEN

Efficient removal of malachite green (MG) dye from simulated wastewater is demonstrated using high surface area reduced graphene oxide (rGO). The plausible interaction pathways between MG dye and rGO are deduced from nanostructural features (HRTEM) of rGO and spectroscopic analyses (FTIR and Raman). The high surface area (931m2⋅gm-1) of rGO, π-π interaction between the aromatic rings of MG dye and graphitic skeleton, and electrostatic interaction of cationic centre of MG dye with π-electron clouds and negatively charged residual oxygen functionalities of rGO collectively facilitate the adsorption of MG dye on the rGO. The rGO displays adsorption capacity as high as 476.2mg⋅g-1 for MG dye. The thermodynamic parameters calculated from the temperature dependent isotherms suggested that the adsorption was a spontaneous and endothermic process. These results promise the potential of high surface area rGO for efficient removal of cationic dyes for wastewater treatment.

19.
Chempluschem ; 81(5): 489-495, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-31968773

RESUMEN

Thin films of imidazolium (Im) ionic liquids with bis(salicylato)borate (BScB) and hexafluorophosphate (PF6 - ) anions were grafted onto copper oxide (CuO) nanorods. Chemical and structural features of ionic-liquid-functionalized CuO (CuO-IL) nanorods were examined by X-ray photoelectron spectroscopy, FTIR spectroscopy, XRD, and high-resolution TEM analyses. The CuO-IL nanorods were demonstrated to be efficient photocatalysts for the splitting of water under visible-light irradiation without using any sacrificial agent. The pristine CuO nanorods could not split water, whereas CuO-IL nanorods exhibited excellent photocatalytic activities and produced 1827 and 1082 µmol of hydrogen in 2 h with 20 mg of CuO-ImBScB and CuO-ImPF6 as photocatalysts, respectively. The photocatalytic activity of the CuO-IL nanorods was attributed to the synergistic effect of ionic-liquid thin films and CuO nanorods. The trapping of photoinduced charge carriers by ionic liquids inhibits the recombination process, and consequently, the CuO nanorods facilitate the water-splitting reaction. The CuO-IL photocatalysts were efficiently recycled without loss of catalytic activity, which revealed the stability of the ionic-liquid thin films grafted on the CuO nanorods.

20.
J Phys Chem B ; 109(49): 23405-14, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16375313

RESUMEN

The conformational order of alkylsilane monolayers self-assembled on a rough aluminum surface is affected by the molecular chain length and the thermal history of the sample. These monolayers have been characterized by grazing angle FTIR spectroscopy. Tribological mechanisms were explored using initial molecular conformation order, sliding distance, normal load, and substrate compliance as experimental variables. Results indicate that the initial conformational disorder of the molecules determines the level of friction at the commencement of sliding. Adverse changes in dynamic friction and monolayer life during sliding are not thermally induced but are related to substrate roughness and local plasticity. Plastic deformation reduces the spatial density of the alkylsilane monolayer and is accentuated by an increase in the normal load.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA