Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Dermatol ; 187(2): 211-222, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35257359

RESUMEN

BACKGROUND: Psoriasis is an immune-mediated inflammatory skin disease, in which an interplay between infiltrating immune cells and keratinocytes sustains chronic skin inflammation. Interleukin (IL)-17A is a key inflammatory cytokine in psoriasis and its main cellular targets are keratinocytes. OBJECTIVES: To explore the role of miR-378a in psoriasis. METHODS: Keratinocytes obtained from psoriatic skin and healthy epidermis were separated by magnetic sorting, and the expression of miR-378a was analysed by quantitative polymerase chain reaction. The regulation and function of miR-378a was studied using primary human keratinocytes. The expression of miR-378a was modulated by synthetic mimics, and nuclear factor kappa B (NF-κB) activity and transcriptomic changes were studied. Synthetic miR-378a was delivered to mouse skin in conjunction with induction of psoriasiform skin inflammation by imiquimod. RESULTS: We show that miR-378a is induced by IL-17A in keratinocytes through NF-κB, C/EBP-ß and IκBζ and that it is overexpressed in psoriatic epidermis. In cultured keratinocytes, ectopic expression of miR-378a resulted in the nuclear translocation of p65 and enhanced NF-κB-driven promoter activity even in the absence of inflammatory stimuli. Moreover, miR-378a potentiated the effect of IL-17A on NF-κB nuclear translocation and downstream activation of the NF-κB pathway. Finally, injection of miR-378a into mouse skin augmented psoriasis-like skin inflammation with increased epidermal proliferation and induction of inflammatory mediators. Mechanistically, miR-378a acts as a suppressor of NFKBIA/IκBζ, an important negative regulator of the NF-κB pathway in keratinocytes. CONCLUSIONS: Collectively, our findings identify miR-378a as an amplifier of IL-17A-induced NF-κB signalling in keratinocytes and suggest that increased miR-378a levels contribute to the amplification of IL-17A-driven skin inflammation in psoriasis.


Asunto(s)
Interleucina-17 , Queratinocitos , MicroARNs , Psoriasis , Animales , Humanos , Inflamación , Interleucina-17/farmacología , Queratinocitos/efectos de los fármacos , Ratones , MicroARNs/genética , FN-kappa B/metabolismo , Piel/metabolismo
2.
Toxicol Appl Pharmacol ; 423: 115568, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965371

RESUMEN

N-methyl pyrrolidone (NMP) is an FDA approved molecule used as an excipient in pharmaceutical industry. Besides having a central role in formulation of drugs, the most important function of any excipient is to guarantee the safety of the medicine during and after its administration. Several studies have shown that exposure to NMP and especially in rats produce a gonadotoxic effect leading to infertility. However, the mechanisms underlying the effect of NMP on male reproduction are unknown. The aim of this study was to assess the reproductive toxicity of NMP in male rats and to elucidate the underlying mechanism. Male Sprague Dawley rats were injected intraperitoneally, twice/ week, at a dose of 108 mg/ 100 g of body weight with NMP. Analysis of reproductive parameters revealed testicular atrophy in NMP treated animals compared to control animals. Germ cell composition within the seminiferous tubules was disturbed and manifested in an increase in number of cells with fragmented DNA. A subsequent decrease in number of spermatocytes and spermatids was observed. Alpha screen assay shows that NMP acts at the concentrations we applied in vivo as a low affinity inhibitor for BRDT (testis specific bromodomain protein). BRDT inhibition is mirrored by a significant decrease in the expression of early stage spermatocyte markers (lmna, aurkc and ccna1), during which BRDT expression predominates. A significant decrease in testosterone levels was also observed. Since NMP interferes with spermatogenesis on various levels, its use in humans must be carefully monitored.


Asunto(s)
Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/metabolismo , Pirrolidinonas/toxicidad , Espermatogénesis/efectos de los fármacos , Teratógenos/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Hormona Folículo Estimulante/sangre , Masculino , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Espermatogénesis/fisiología , Testosterona/sangre
3.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681710

RESUMEN

The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Pirrolidinonas/farmacología , Animales , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/patología , Proteína Morfogenética Ósea 2/agonistas , Proteína Morfogenética Ósea 2/metabolismo , Huesos/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Pirrolidinonas/química , Pirrolidinonas/uso terapéutico , Ligando RANK/farmacología , Conejos , Proteína Smad1/metabolismo
4.
3D Print Addit Manuf ; 10(5): 905-916, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886403

RESUMEN

Autologous bone remains the gold standard bone substitute in clinical practice. Therefore, the microarchitecture of newly developed synthetic bone substitutes, which reflects the spatial distribution of materials in the scaffold, aims to recapitulate the natural bone microarchitecture. However, the natural bone microarchitecture is optimized to obtain a mechanically stable, lightweight structure adapted to the biomechanical loading situation. In the context of synthetic bone substitutes, the application of a Triply Periodic Minimum Surface (TPMS) algorithm can yield stable lightweight microarchitectures that, despite their demanding architectural complexity, can be produced by additive manufacturing. In this study, we applied the TPMS derivative Adaptive Density Minimal Surfaces (ADMS) algorithm to produce scaffolds from hydroxyapatite (HA) using a lithography-based layer-by-layer methodology and compared them with an established highly osteoconductive lattice microarchitecture. We characterized them for compression strength, osteoconductivity, and bone regeneration. The in vivo results, based on a rabbit calvaria defect model, showed that bony ingrowth into ADMS constructs as a measure of osteoconduction depended on minimal constriction as it limited the maximum apparent pore diameter in these scaffolds to 1.53 mm. Osteoconduction decreased significantly at a diameter of 1.76 mm. The most suitable ADMS microarchitecture was as osteoconductive as a highly osteoconductive orthogonal lattice microarchitecture in noncritical- and critical-size calvarial defects. However, the compression strength and microarchitectural integrity in vivo were significantly higher for scaffolds with their microarchitecture based on the ADMS algorithm when compared with high-connectivity lattice microarchitectures. Therefore, bone substitutes with high osteoconductivity can be designed with the advantages of the ADMS-based microarchitectures. As TPMS and ADMS microarchitectures are true lightweight structures optimized for high mechanical stability with a minimal amount of material, such microarchitectures appear most suitable for bone substitutes used in clinical settings to treat bone defects in weight-bearing and non-weight-bearing sites.

5.
Front Physiol ; 11: 601084, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240111

RESUMEN

Development of an effective male contraceptive agent remains a challenge. The present study evaluates the potential of N, N-Dimethylacetamide (DMA), a FDA approved excipient as a male contraceptive agent. Male Sprague Dawley rats injected with DMA for a period of 8 weeks (one injection per week) showed a significant alteration of reproductive parameters. Furthermore, DMA treated animals showed complete infertility in a dose dependent manner, as no pups were born despite proper mating between females and DMA treated males. However, stopping the DMA treatment for a period of 8 weeks (after the initial treatment) restored the reproductive parameters to normal. Moreover, the fertility was resumed to normal as pups were born in the groups where DMA treatment was halted after initial DMA treatment. All these changes had no effect on the level of reproductive hormones FSH, LH and testosterone. Taken together, our results indicate that DMA acts in a reversible and non-hormonal manner to achieve contraception in rats. Therefore, repurposing the use of DMA could lead in a short time to an inexpensive and safer male contraceptive option.

6.
Chemosphere ; 256: 127001, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447106

RESUMEN

N, N-Dimethylacetamide is an FDA approved solvent widely used in pharmaceutical industry to facilitate the solubility of lipophilic, high molecular weight drugs with poor water solubility. However, the cytotoxic effects of DMA raises the concern about its use in clinical applications. In the present study, we address the effect of DMA on spermatogenesis. Male Sprague Dawley rats were injected intra-peritoneally for 8 weeks, once a week at a dose of 862 mg/kg. Analysis of reproductive parameters revealed that DMA treated animals exhibit spermatid formation defects within the testis describing the characteristics of oligozoospermia. A subsequent decrease in epididymal sperm concentration along with distortion of sperm morphology was observed. The mitochondrial and microtubule organization in the sperm is considerably modified by DMA. This disrupts the sperm kinetics thus decreasing the total and progressive sperm motility. Finally, DMA treatment resulted in loss of fertility. Our results indicate that exposure to DMA has a negative impact on spermatogenesis and leads to infertility in male rats by inhibiting the post meiotic stages of sperm development. Therefore, the use of DMA in humans must be closely monitored.


Asunto(s)
Acetamidas/toxicidad , Excipientes/toxicidad , Espermatogénesis/efectos de los fármacos , Animales , Epidídimo/efectos de los fármacos , Fertilidad/efectos de los fármacos , Humanos , Infertilidad , Masculino , Ratas , Ratas Sprague-Dawley , Reproducción , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos
7.
Tokai J Exp Clin Med ; 43(4): 132-138, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30488399

RESUMEN

OBJECTIVE: Autologous cultured explants of human oral mucosal epithelial cells (OMEC) are a potential therapeutic modality in patients of bilateral ocular surface disease (OSD) with incapacitating dry eye. Mycophenolate mofetil (MMF) has been found to upregulate the mucin production in conjunctival goblet cells in vitro. The aim of this study was to evaluate the effects of MMF on mucin expression in primary cultures of OMEC. METHODS: With informed consent, oral mucosal epithelial tissue samples were obtained from patients undergoing oral surgery for non-malignant conditions. OMEC were cultured on human amniotic membrane (HAM) scaffold for 2 weeks. Mucin expression was quantified using RT-PCR and qPCR before and after treating cultured OMEC with MMF. RESULTS: Morphological studies revealed a confluent sheet of proliferating, stratified oral mucosal epithelial cells. Mucin mRNAs were elucidated by RT-PCR. Compared to untreated controls, MUC1, MUC15 and MUC16 mRNAs and MUC1 protein expression were found to be upregulated in MMF treated primary cultures of OMEC, as assessed by qPCR and immunocytochemistry respectively. CONCLUSION: Our findings demonstrate that MMF can act as a novel enhancer of mucin production in OMEC in vitro. It has the potential to improve dry eye in patients undergoing OMEC transplantation for bilateral OSD.


Asunto(s)
Células Epiteliales/metabolismo , Mucosa Bucal/metabolismo , Mucinas/metabolismo , Ácido Micofenólico/farmacología , Proliferación Celular , Células Cultivadas , Síndromes de Ojo Seco/terapia , Células Epiteliales/trasplante , Expresión Génica , Humanos , Inmunohistoquímica , Mucosa Bucal/citología , Mucinas/genética , Ácido Micofenólico/uso terapéutico , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estimulación Química , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA