Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Langmuir ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995619

RESUMEN

Utilizing energy directly from the sun, solar water evaporation drives the global hydrological cycle and produces freshwater from saline water in the oceans and on land. As water is a poor solar absorber, a photothermal material is needed to facilitate the conversion of photons to thermal energy and increase the efficiency of solar desalination. However, the current photothermal materials are less efficient and expensive to be manufactured. Inspired by nature, we created a new photothermal material called a wood biochar monolith (WBM) by carbonizing wood using the pyrolysis process at 1000 °C and subsequently steaming at high pressure. Under low light intensity (193 W/m2), the light to vapor efficiency of maple WBM is more than 100%. The outstanding performance of WBM is attributed to (1) the facilitated water transport in the hierarchical, open-pore network preserved from the wood precursor in WBM and (2) the reduced evaporation enthalpy of confined water in WBM and the high broadband sunlight absorptivity of WBM. Moreover, the high evaporation rate causes the temperature of WBM to be lower than that of the surrounding water, enabling thermal energy harvesting by WBM from water and making a light-to-vapor efficiency of >100% feasible. This discovery offers opportunities for developing low-cost, high-performance water desalination or humidification devices deployable in remote areas with nonconcentrated natural sunlight.

2.
J Am Chem Soc ; 145(24): 13134-13146, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37278596

RESUMEN

Stable metal nitrides (MN) are promising materials to fit the future "green" ammonia-hydrogen nexus. Either through catalysis or chemical looping, the reductive hydrogenation of MN to MN1-x is a necessary step to generate ammonia. However, encumbered by the formation of kinetically stable M-NH1─3 surface species, this reduction step remains challenging under mild conditions. Herein, we discovered that deleterious Ti-NH1─3 accumulation on TiN can be circumvented photochemically with supported single atoms and clusters of platinum (Pt1-Ptn) under N2-H2 conditions. The photochemistry of TiN selectively promoted Ti-NH formation, while Pt1-Ptn effectively transformed any formed Ti-NH into free ammonia. The generated ammonia was found to originate mainly from TiN reduction with a minor contribution from N2 activation. The knowledge accrued from this fundamental study could serve as a springboard for the development of MN materials for more efficient ammonia production to potentially disrupt the century-old fossil-powered Haber-Bosch process.

3.
Opt Express ; 30(11): 18978-18994, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221686

RESUMEN

Stimulated emission luminescent solar concentrators (SELSCs) have the potential to reduce escape cone losses in luminescent solar concentrators (LSCs). However, a functional SELSC is yet to be demonstrated. Previous numerical studies and detailed balance limits provide guidance, but they also contradict and likely overestimate performance and underestimate requirements. In this work, we introduce a rate-equation model with inversion requirements compatible with detailed balance limits and apply this model to the numerical modelling of window-sized SELSCs. We find that the optimal pump photon energy for both LSCs and SELSCs is 1.35 eV and the potential improvement of SELSCs over LSCs is found to be 19.3%. The efficiencies found are much lower than those specified in previous work due to the increase in Stokes shift required for a highly luminescent material. We also find that SELSCs are more attractive at higher matrix losses, that emission linewidths <0.05  eV are desirable, and that SELSC devices can potentially achieve performance equal to LSCs at low illumination levels and simultaneously exceed it by up to 16.5% at 1-sun illumination.

4.
Nano Lett ; 21(21): 9124-9130, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723552

RESUMEN

Metamaterials are a new class of artificial materials that can achieve electromagnetic properties that do not occur naturally, and as such they can also be a new class of photocatalytic structures. We show that metal-based catalysts can achieve electromagnetic field amplification and broadband absorption by decoupling optical properties from the material composition as exemplified with a ZnO/Cu metamaterial surface comprising periodically arranged nanocubes. Through refractive index engineering close to the index of air, the metamaterial exhibits near-perfect 98% absorption. The combination of plasmonics and broadband absorption elevates the weak electric field intensities across the nonplasmonic absorption range. This feedback between optical excitation and plasmonic excitation dramatically enhances light-to-dark catalytic rates by up to a factor of 181 times, compared to a 3 times photoenhancement of ZnO/Cu nanoparticles or films, and with angular invariance. These results show that metamaterial catalysts can act as a singular light harvesting device that substantially enhances photocatalysis of important reactions.

5.
Small ; 17(37): e2103702, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390185

RESUMEN

Micromanipulation techniques that are capable of assembling nano/micromaterials into usable structures such as topographical micropatterns (TMPs) have proliferated rapidly in recent years, holding great promise in building artificial electronic and photonic microstructures. Here, a method is reported for forming TMPs based on optoelectronic tweezers in either "bottom-up" or "top-down" modes, combined with in situ photopolymerization to form permanent structures. This work demonstrates that the assembled/cured TMPs can be harvested and transferred to alternate substrates, and illustrates that how permanent conductive traces and capacitive circuits can be formed, paving the way toward applications in microelectronics. The integrated, optical assembly/preservation method described here is accessible, versatile, and applicable for a wide range of materials and structures, suggesting utility for myriad microassembly and microfabrication applications in the future.


Asunto(s)
Micromanipulación , Óptica y Fotónica , Electrónica , Fotones
6.
Opt Lett ; 46(12): 2916-2919, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129573

RESUMEN

Solar-pumped lasers and optical amplifiers continue to draw research interest with advances in nanomaterials science and technology. Establishing accurate detailed balance limits for inversion in these systems is essential. In this Letter, we re-examine the threshold limits for inversion in broadband-pumped lasers, with reference to those provided by Roxlo and Yablonvitch [Opt. Lett.8, 271 (1983)OPLEDP0146-959210.1364/OL.8.000271], where they determined the minimum Stokes shift and the minimum ratio of pump band to emission band absorption constants-based on independent consideration of the emission at pump and emission frequencies. In contrast, the derivation here simultaneously accounts for emission in both the pump and emission bands, which in turn leads to a single consolidated inequality that serves to establish the revised threshold requirements for inversion. Upon applying this new unified relationship to solar-pumped devices, a large increase in the minimum required Stokes shifts for 1-sun devices, particularly at larger pump energies and smaller ratios of αp0/αe0, is found. The maximum possible efficiencies of solar-pumped devices are calculated using this new relation.

7.
Nanotechnology ; 32(50)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544057

RESUMEN

Surface-enhanced Raman scattering (SERS) substrates with multiwavelength rainbow-trapping properties hold the potential for a one-size-fits-all platform for rapid and multiplexed disease detection. We present the first report on the utilization of rainbow-trapping width-graded nano-gratings, a new class of chirped metamaterials, to detect protein biomarkers. Using cytochrome c (Cc), a charged analyte with inherent difficulty in adsorbing onto sputtered silver films, we investigated methods of binding Cc on the silver nano-grating in order to improve the SERS signal strength at both 532 and 638 nm excitation. Cc was not detectable on the Ag nano-gratings without surface functionalization at 1µM concentration. Upon charge reversal functionalization of the Ag nano-gratings, 1µM Cc was detectable albeit not reliably. By further crosslinking 1µM Cc to the functionalized Ag nano-gratings, the analyte-capture detection scheme greatly improved the SERS signal strength and reliability at both excitation wavelengths and allowed for quantification of their coefficients of variation with values down to 27%.

8.
J Am Chem Soc ; 142(41): 17403-17412, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32948092

RESUMEN

Optimizing kinetic barriers of ammonia synthesis to reduce the energy intensity has recently attracted significant research interest. The motivation for the research is to discover means by which activation barriers of N2 dissociation and NHz (z = 1-2, surface intermediates) destabilization can be reduced simultaneously, that is, breaking the "scaling relationship". However, by far only a single success has been reported in 2016 based on the discovery of a strong-weak N-bonding pair: transition metals (nitrides)-LiH. Described herein is a second example that is counterintuitively founded upon a strong-strong N-bonding pair unveiled in a bifunctional nanoscale catalyst TiO2-xHy/Fe (where 0.02 ≤ x ≤ 0.03 and 0 < y < 0.03), in which hydrogen spillover (H) from Fe to cascade oxygen vacancies (OV-OV) results in the trapped form of OV-H on the TiO2-xHy component. The Fe component thus enables facile activation of N2, while the OV-H in TiO2-xHy hydrogenates the N or NHz to NH3 easily.

9.
Small ; 16(49): e2005754, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33201581

RESUMEN

Nanoscale titanium nitride TiN is a metallic material that can effectively harvest sunlight over a broad spectral range and produce high local temperatures via the photothermal effect. Nanoscale indium oxide-hydroxide, In2 O3- x (OH)y , is a semiconducting material capable of photocatalyzing the hydrogenation of gaseous CO2 ; however, its wide electronic bandgap limits its absorption of photons to the ultraviolet region of the solar spectrum. Herein, the benefits of both nanomaterials in a ternary heterostructure: TiN@TiO2 @In2 O3- x (OH)y are combined. This heterostructured material synergistically couples the metallic TiN and semiconducting In2 O3- x (OH)y phases via an interfacial semiconducting TiO2 layer, allowing it to drive the light-assisted reverse water gas shift reaction at a conversion rate greatly surpassing that of its individual components or any binary combinations thereof.

10.
Phys Chem Chem Phys ; 22(41): 23686-23698, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33057489

RESUMEN

Photo-Induced Transient Current Spectroscopy (PICTS) is a versatile technique for measurements of defect state energies and densities in photo-active materials. It is suitable for investigating the surface-gas adsorbate behavior and the defect characteristics of defect laden In2O3-x(OH)y nanorods, having oxygen vacancies and hydroxide surface groups, under in situ reactor conditions of dark ambient temperature, dark 150 °C and photo-illuminated 150 °C, for the photo-assisted Reverse Water Gas Shift reaction. From glovebox-protected X-ray Photoelectron Spectroscopy and in situ PICTS measurements we determined that the reduction of CO2 is associated with heterolytic dissociation of H2 into In-H§- and HO-H§+ centres accompanied by an increase in average carrier trap energies; increased carbonate formation in a photo/thermal reactor state of H2 + CO2, and an average trap energy decrease of 0.11 eV from H2 to a CO2 + H2 mixture, which correlates with binding energy shifts of the OH shoulder of the O1s spectra. These results show the reactivity link between the various OH groups, oxygen vacancies and trap energies of In2O3-x(OH)y in the reactant gas atmosphere components.

11.
Molecules ; 24(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652758

RESUMEN

In the study reported herein, glovebox-protected X-ray photoelectron spectroscopy (XPS) and in situ Hall charge carrier measurements provide new insights into the surface physical chemistry of gaseous H2, CO2, and H2+CO2 combined with nanostructured In2O(3-x)(OH)y nanorods, which ensue under photochemical and thermochemical operating conditions. Heterolytic dissociation of H2 in H2-only atmosphere appears to occur mainly under dark and ambient temperature conditions, while the greatest amount of OH shoulder expansion in H2+CO2 atmosphere appears to mainly occur under photoilluminated conditions. These results correlate with those of the Hall measurements, which show that the prevalence of homolytic over heterolytic dissociation at increasing temperatures leads to a steeper rate of increase in carrier concentrations; and that H2 adsorption is more prevalent than CO2 in H2+CO2 photoillumination conditions.


Asunto(s)
Dióxido de Carbono/química , Hidrógeno/química , Indio/química , Nanotubos/química , Procesos Fotoquímicos , Catálisis , Hidrogenación , Espectroscopía de Fotoelectrones
12.
Small ; 14(45): e1803342, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30307718

RESUMEN

Optical micromanipulation has become popular for a wide range of applications. In this work, a new type of optical micromanipulation platform, patterned optoelectronic tweezers (p-OET), is introduced. In p-OET devices, the photoconductive layer (that is continuous in a conventional OET device) is patterned, forming regions in which the electrode layer is locally exposed. It is demonstrated that micropatterns in the photoconductive layer are useful for repelling unwanted particles/cells, and also for keeping selected particles/cells in place after turning off the light source, minimizing light-induced heating. To clarify the physical mechanism behind these effects, systematic simulations are carried out, which indicate the existence of strong nonuniform electric fields at the boundary of micropatterns. The simulations are consistent with experimental observations, which are explored for a wide variety of geometries and conditions. It is proposed that the new technique may be useful for myriad applications in the rapidly growing area of optical micromanipulation.


Asunto(s)
Micromanipulación/métodos , Pinzas Ópticas , Animales , Separación Celular , Humanos
13.
Opt Express ; 26(5): 5300-5309, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529735

RESUMEN

Optoelectronic tweezers (OET) are a microsystem actuation technology capable of moving microparticles at mm s-1 velocities with nN forces. In this work, we analyze the behavior of particles manipulated by negative dielectrophoresis (DEP) forces in an OET trap. A user-friendly computer interface was developed to generate a circular rotating light pattern to control the movement of the particles, allowing their force profiles to be conveniently measured. Three-dimensional simulations were carried out to clarify the experimental results, and the DEP forces acting on the particles were simulated by integrating the Maxwell stress tensor. The simulations matched the experimental results and enabled the determination of a new "hopping" mechanism for particle-escape from the trap. As indicated by the simulations, there exists a vertical DEP force at the edge of the light pattern that pushes up particles to a region with a smaller horizontal DEP force. We propose that this phenomenon will be important to consider for the design of OET micromanipulation experiments for a wide range of applications.

14.
Opt Express ; 25(24): A1023-A1042, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29220981

RESUMEN

The effect of various design and material parameters on the efficiency of stimulated emission-based luminescent solar concentrators (SELSCs) is studied numerically using a 4-level luminescent material containing concentrator. It is shown that the most efficient SELSCs have emission wavelengths of 1.5-1.8 µm, with a strong dependence on the Stokes shift. Depending on the parameters of the system, spontaneous emission is shown to nevertheless account for a significant fraction of potential energy generation. Assuming a propagation loss constant of -0.1m-1, and a refractive index of 1.5, the optimal length of an SELSC is found to be ~1.5m. Given these losses and an efficiency target of 10% greater than traditional LSCs, the required material emission linewidth varies from 10 to 100nm, with maximum thicknesses of 3-30 µm. Further, when reflection and propagation losses are considered, a single laser pass is preferred over multiple passes. It is also shown that SELSCs are significantly less sensitive to luminescent quantum efficiency when compared to conventional LSCs due to the increased radiative emission rate.

15.
J Am Chem Soc ; 138(4): 1206-14, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26759919

RESUMEN

In this study we investigated, theoretically and experimentally, the unique photoactive behavior of pristine and defected indium oxide surfaces providing fundamental insights into their excited state properties as well as an explanation for the experimentally observed enhanced activity of defected indium oxide surfaces for the gas-phase reverse water gas shift reaction, CO2 + H2 + hν→ CO + H2O in the light compared to the dark. To this end, a detailed excited-state study of pristine and defected forms of indium oxide (In2O3, In2O3-x, In2O3(OH)y and In2O3-x(OH)y) surfaces was performed using time dependent density functional theory (TDDFT) calculations, the results of which were supported experimentally by transient absorption spectroscopy and photoconductivity measurements. It was found that the surface frustrated Lewis pairs (FLPs) created by a Lewis acidic coordinately unsaturated surface indium site proximal to an oxygen vacancy and a Lewis basic surface hydroxide site in In2O3-x(OH)y become more acidic and basic and hence more active in the ES compared to the GS. This provides a theoretical mechanism responsible for the enhanced activity and reduced activation energy of the photochemical reverse water gas shift reaction observed experimentally for In2O3-x(OH)y compared to the thermochemical reaction. This fundamental insight into the role of photoexcited surface FLPs for catalytic CO2 reduction could lead to improved photocatalysts for solar fuel production.

16.
Sci Adv ; 9(15): eadg2454, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37043571

RESUMEN

Photocarriers predominantly recombine at semiconductor surfaces and interfaces, assuming high bulk carrier lifetime. Consequently, understanding the extraction of photocarriers via surfaces is critical to optoelectronics. Here, we propose Haynes-Shockley experiment analogs to investigate photocarrier surface extraction. A Schottky junction is used to tune the silicon near-surface electric field strength that varies over several orders of magnitude and simultaneously observe variations in broadband photocarrier extraction. Schottky barrier height and surface potential are both modulated. Work function tunable indium tin oxide (ITO) is developed to precisely regulate the barrier height and collect photocarriers at 0 V bias, thus avoiding the photocurrent gain effect. All experiments demonstrate >98% broadband internal quantum efficiency. The experiments are further extended to wave interference photonic crystals and random pyramids, paving a way to estimate the photogeneration rate of diverse surface light-trapping topologies by collecting nearly all photocarriers. The insights reported here provide a systematic experimental basis to investigate interfacial effects on photocarrier spatial generation and collection.

17.
ACS Appl Nano Mater ; 6(17): 15385-15396, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37706067

RESUMEN

Characterizing complex biofluids using surface-enhanced Raman spectroscopy (SERS) coupled with machine learning (ML) has been proposed as a powerful tool for point-of-care detection of clinical disease. ML is well-suited to categorizing otherwise uninterpretable, patient-derived SERS spectra that contain a multitude of low concentration, disease-specific molecular biomarkers among a dense spectral background of biological molecules. However, ML can generate false, non-generalizable models when data sets used for model training are inadequate. It is thus critical to determine how different SERS experimental methodologies and workflow parameters can potentially impact ML disease classification of clinical samples. In this study, a label-free, broadband, Ag nanoparticle-based SERS platform was coupled with ML to assess simulated clinical samples for cardiovascular disease (CVD), containing randomized combinations of five key CVD biomarkers at clinically relevant concentrations in serum. Raman spectra obtained at 532, 633, and 785 nm from up to 300 unique samples were classified into physiological and pathological categories using two standard ML models. Label-free SERS and ML could correctly classify randomized CVD samples with high accuracies of up to 90.0% at 532 nm using as few as 200 training samples. Spectra obtained at 532 nm produced the highest accuracies with no significant increase achieved using multiwavelength SERS. Sample preparation and measurement methodologies (e.g., different SERS substrate lots, sample volumes, sample sizes, and known variations in randomization and experimental handling) were shown to strongly influence the ML classification and could artificially increase classification accuracies by as much as 27%. This detailed investigation into the proper application of ML techniques for CVD classification can lead to improved data set acquisition required for the SERS community, such that ML on labeled and robust SERS data sets can be practically applied for future point-of-care testing in patients.

18.
Small ; 8(23): 3647-54, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22887859

RESUMEN

The synthesis of highly luminescent, colloidally-stable and organically-capped silicon nanocrystals (ncSi) and their incorporation into a visible wavelength organic light-emitting diode (OLED) is reported. By substituting decyl chains with aromatic allylbenzene capping ligands and size-selecting visible emitting ncSi, superior packing density, enhanced charge transport, and an improved photoluminescence absolute quantum yield of the ncSi is obtained in the active layer of an OLED.

19.
Nano Lett ; 11(4): 1457-62, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21417479

RESUMEN

We report herein on the integration of novel transparent and conducting one-dimensional photonic crystals that consist of periodically alternating layers of spin-coated antimony-doped tin oxide nanoparticles and sputtered tin-doped indium oxide into organic light emitting diode (OLED) microcavities. The large refractive index contrast between the layers due the porosity of the nanoparticle layer led to facile fabrication of dielectric mirrors with intense and broadband reflectivity from structures consisting of only five bilayers. Because our photonic crystals are easily amenable to large scale OLED fabrication and simultaneously selectively reflective as well as electronically conductive, such materials are ideally suited for integration into OLED microcavities. In such a device, the photonic crystal, which represents a direct drop-in replacement for typical ITO anodes, is capable of serving two necessary functions: (i) as one partially reflecting mirror of the optical microcavity; and (ii) as the anode of the diode.


Asunto(s)
Antimonio/química , Iluminación/instrumentación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Compuestos Orgánicos/química , Semiconductores , Compuestos de Estaño/química , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Tamaño de la Partícula
20.
Adv Sci (Weinh) ; 9(33): e2203234, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36253154

RESUMEN

Photodiodes are fundamental components in modern optoelectronics. Heterojunction photodiodes, simply configured by two different contact materials, have been a hot research topic for many years. Currently reported self-biased heterojunction photodiodes routinely have external quantum efficiency (EQE) significantly below 100% due to optical and electrical losses. Herein, an approach that virtually overcomes this 100% EQE challenge via low-aspect-ratio nanostructures and drift-dominated photocarrier transport in a heterojunction photodiode is proposed. Broadband near-ideal EQE is achieved in nanocrystal indium tin oxide/black silicon (nc-ITO/b-Si) Schottky photodiodes. The b-Si comprises nanostalagmites which balance the antireflection effect and surface morphology. The built-in electric field is explored to match the optical generation profile, realizing enhanced photocarrier transport over a broadband of photogeneration. The devices exhibit unprecedented EQE among the reported leading-edge heterojunction photodiodes: average EQE surpasses ≈98% for wavelengths of 570-925 nm, while overall EQE is greater than ≈95% from 500 to 960 nm. Further, only elementary fabrication techniques are explored to achieve these excellent device properties. A heart rate sensor driven by nanowatt faint light is demonstrated, indicating the enormous potential of this near-ideal b-Si photodiode for low power consuming applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA