RESUMEN
Overuse of aluminum salts (a.k.a., alum) in coagulation and flocculation processes in water treatment raises concerns about increased levels of aluminum (Al) in drinking water. In this study, we present a probabilistic human health risk assessment (HRA) for non-cancerogenic risks, with Sobol sensitivity analysis, to vet the concern of increased health risk from Al in drinking water in Shiraz, Iran, for children, adolescents, and adults. The results show that the concentration of Al in the drinking water in Shiraz varies significantly between winter and summer seasons and varies considerably spatially across the city irrespective of the season. However, all concentrations are below the guideline concentration. The HRA results show that the highest health risk is for children in summer, and the lowest is for adolescents and adults during winter, with generally higher health risks for younger age groups. However, Monte Carlo results for all age groups suggest no adverse health effects due to Al exposure. The sensitivity analysis shows that the sensitive parameters vary across age groups. For example, the Al concentration and ingestion rate pose the most risk for adolescent and adult groups, and children group, respectively. More importantly, the interaction of Al concentration with ingestion rate and body weight is the controlling parameters for evaluating HRA rather than Al concentration alone. We conclude that while the HRA of Al in Shiraz drinking water did not indicate significant health risk, regular monitoring and optimal operation of the coagulation and flocculation processes are essential.
Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Adolescente , Humanos , Agua Potable/análisis , Aluminio/toxicidad , Aluminio/análisis , Irán , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos , Agua Subterránea/análisisRESUMEN
Street dust (SD) are the particulates that primarily originated from Earth's crust and secondary alteration and erosion of natural and anthropogenic materials. The multi-dimensional pollution and health risk assessment of potentially toxic metals (PTMs) in these particles remain unknown in the majority of world urban areas. The elemental concentration, mineralogy, and micro-morphology of street dust were determined by inductively coupled plasma mass spectrometry (ICP-MS), SEM-EDX, XRD, and petrographical observation. Multivariate statistical analysis combined with positive matrix factorization (PMF) and Monte-Carlo simulations were applied to source identification and health risk assessment of PTMs. A severe enrichment of Sb, Cu and Zn and moderate contamination of Sn, Pb, and Cr were observed in the samples particularly in the areas with higher loads of traffic. The results of geochemical indices showed that K, Al, Mn, and V have natural/geogenic origins. While Sb, Pb, Cr, Cu, and Zn showed an enrichment relative to the background values with dominant anthropogenic sources. The results were confirmed by source appointment techniques. The results of deterministic and probabilistic health risk assessment by Monte-Carlo simulations revealed the non-carcinogenic nature of As, Mn, and Pb for children mainly through skin and ingestion routes. It can be concluded that the chemical compound of street dust in Gorgan city is affected by both natural (loess deposits) and anthropogenic sources. Also, children are in the risk of exposure to PTMs in street dust more than adults.
Asunto(s)
Polvo , Metales Pesados , Adulto , Niño , China , Ciudades , Polvo/análisis , Monitoreo del Ambiente/métodos , Humanos , Irán , Plomo/análisis , Metales Pesados/análisis , Metales Pesados/toxicidad , Medición de RiesgoRESUMEN
Maintaining the water quality is essential because of the limitation of drinking water bodies and their significant effects on life. Recently, much scientific interest has been attracted to the ecological condition assessment of water resources. Because of numerous health issues connected to water quality, the present work aimed to define the water quality status of Chahnimeh reservoirs, Sistan and Baluchistan province, Iran via the Iran Water Quality Index (IRWQISC), the National Sanitation Foundation Water Quality Index (NSFWQI), and human risk assessment. This cross-sectional descriptive work was accomplished in 4 seasons in 2020. The samples were gathered from 5 various points of Chahnimeh reservoirs. This study led to the results that the NSFWQI index was between 29.4 to 49.32, which showed "bad" quality, and the IRWQI index was between 19.27 and 39.23, which indicated "bad" and "relatively bad" quality. The best water quality based on both indexes was observed in the spring, and the worst was in the fall and summer. The highest value of HQ related to nitrate in drinking water was 1.60 in the group of children. However, according to the Monte Carlo simulation, HQ95% was estimated as 1.29. The Sobol sensitivity analysis of the first-order effect showed that daily water's daily ingestion rate (IR) was the most sensitive input. In addition, the value of the second-order effect indicated that the interaction effect of concentration-ingestion rate was the most sensitive input parameter for HQ. Therefore, regular monitoring is necessary to ensure water safety for human consumption.