Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 144(34): 15825-15837, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35977425

RESUMEN

Hydropersulfides (RSSH) are believed to serve important roles in vivo, including as scavengers of damaging oxidants and electrophiles. The α-effect makes RSSH not only much better nucleophiles than thiols (RSH), but also much more potent H-atom transfer agents. Since HAT is the mechanism of action of the most potent small-molecule inhibitors of phospholipid peroxidation and associated ferroptotic cell death, we have investigated their reactivity in this context. Using the fluorescence-enabled inhibited autoxidation (FENIX) approach, we have found RSSH to be highly reactive toward phospholipid-derived peroxyl radicals (kinh = 2 × 105 M-1 s-1), equaling the most potent ferroptosis inhibitors identified to date. Related (poly)sulfide products resulting from the rapid self-reaction of RSSH under physiological conditions (e.g., disulfide, trisulfide, H2S) are essentially unreactive, but combinations from which RSSH can be produced in situ (i.e., polysulfides with H2S or thiols with H2S2) are effective. In situ generation of RSSH from designed precursors which release RSSH via intramolecular substitution or hydrolysis improve the radical-trapping efficiency of RSSH by minimizing deleterious self-reactions. A brief survey of structure-reactivity relationships enabled the design of new precursors that are more efficient. The reactivity of RSSH and their precursors translates from (phospho)lipid bilayers to cell culture (mouse embryonic fibroblasts), where they were found to inhibit ferroptosis induced by inactivation of glutathione peroxidase-4 (GPX4) or deletion of the gene encoding it. These results suggest that RSSH and the pathways responsible for their biosynthesis may act as a ferroptosis suppression system alongside the recently discovered FSP1/ubiquinone and GCH1/BH4/DHFR systems.


Asunto(s)
Ferroptosis , Animales , Fibroblastos , Peroxidación de Lípido , Ratones , Fosfolípidos , Compuestos de Sulfhidrilo
2.
J Org Chem ; 87(19): 12644-12652, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36084133

RESUMEN

Hydropersulfides (RSSH) have received significant interest in the field of redox biology because of their intriguing biochemical properties. However, because RSSH are inherently unstable, their study is challenging, and as a result, the details of their physiological roles remain ill-defined. Herein, we report strategies to release RSSH utilizing photoremovable protecting groups. RSSH protection with the well-established p-hydroxyphenacyl (pHP) photoprotecting group resulted in inefficient RSSH photorelease along with complex chemistry. Therefore, an alternative precursor was examined in which a self-immolative linker was inserted between the pHP group and RSSH, providing nearly quantitative RSSH release following photolysis at 365 nm. Inspired by these results, we also synthesized an analogous precursor derivatized with 7-diethylaminocoumarin (DEACM), a visible light-cleavable photoprotecting group. Photolysis of this precursor at 420 nm led to efficient RSSH release, and in vitro experiments demonstrated intracellular RSSH delivery in breast cancer MCF-7 cells.


Asunto(s)
Luz , Humanos , Células MCF-7 , Oxidación-Reducción , Fotólisis
3.
J Org Chem ; 86(1): 868-877, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33353299

RESUMEN

Nitroxyl (HNO) has gained a considerable amount of attention because of its promising pharmacological effects. The biochemical mechanisms of HNO activity are associated with the modification of regulatory thiol proteins. Recently, several studies have suggested that hydropersulfides (RSSH), presumed signaling products of hydrogen sulfide (H2S)-mediated thiol (RSH) modification, are additional potential targets of HNO. However, the interaction of HNO with reactive sulfur species beyond thiols remains relatively unexplored. Herein, we present characterization of HNO reactivity with H2S and RSSH. The reaction of H2S with HNO leads to the formation of hydrogen polysulfides and sulfur (S8), suggesting a potential role in sulfane sulfur homeostasis. Furthermore, we show that hydropersulfides are more efficient traps for HNO than their thiol counterparts. The reaction of HNO with RSSH at varied stoichiometries has been examined with the observed production of various dialkylpolysulfides (RSSnSR) and other nitrogen-containing dialkylpolysulfide species (RSS-NH-SnR). We do not observe evidence of sulfenylsulfinamide (RS-S(O)-NH2) formation, a pathway expected by analogy with the known reactivity of HNO with thiol.

4.
J Am Chem Soc ; 142(9): 4309-4316, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32058717

RESUMEN

The recent discovery of hydropersulfides (RSSH) in mammalian systems suggests their potential roles in cell signaling. However, the exploration of RSSH biological significance is challenging due to their instability under physiological conditions. Herein, we report the preparation, RSSH-releasing properties, and cytoprotective nature of alkylamine-substituted perthiocarbamates. Triggered by a base-sensitive, self-immolative moiety, these precursors show efficient RSSH release and also demonstrate the ability to generate carbonyl sulfide (COS) in the presence of thiols. Using this dually reactive alkylamine-substituted perthiocarbamate platform, the generation of both RSSH and COS is tunable with respect to half-life, pH, and availability of thiols. Importantly, these precursors exhibit cytoprotective effects against hydrogen peroxide-mediated toxicity in H9c2 cells and cardioprotective effects against myocardial ischemic/reperfusion injury, indicating their potential application as new RSSH- and/or COS-releasing therapeutics.


Asunto(s)
Cardiotónicos/farmacología , Disulfuros/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Sulfuros/metabolismo , Óxidos de Azufre/metabolismo , Tiocarbamatos/farmacología , Animales , Cardiotónicos/síntesis química , Línea Celular , Disulfuros/síntesis química , Ratones , Ratas , Tiocarbamatos/síntesis química
5.
Arch Biochem Biophys ; 687: 108391, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32360749

RESUMEN

Hydropersulfides are reported to be good biological reductants, superior to thiols and akin to selenols. As such, they have been previously shown to reduce metalloproteins such as ferric myoglobin and ferric cytochrome c to their ferrous forms under conditions where little or no reduction from corresponding thiols is observed. Not surprisingly, the reduction of ferric myoglobin to ferrous myoglobin under aerobic conditions results in the generation of oxymyoglobin (dioxygen bound ferrous myoglobin). Previous studies have demonstrated that oxymyoglobin can also act as an oxidant with highly reducing species such as hydroxylamine and ascorbate. Considering the reducing properties of hydropersulfides, it is possible that they can also react with oxymyoglobin similarly to hydroxylamine or ascorbate. Herein, this reaction is examined and indeed hydropersulfides are found to react with oxymyoglobin similarly to other reducing species leading to a fleeting ferric myoglobin which is rapidly reduced to the ferrous form also by hydropersulfide.


Asunto(s)
Mioglobina/química , Sulfuros/química , Animales , Ácido Ascórbico/química , Bovinos , Caballos , Hidroxilamina/química , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Penicilamina/análogos & derivados
6.
J Am Chem Soc ; 140(50): 17333-17337, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30507192

RESUMEN

Because of their inherent instability, hydropersulfides (RSSH) must be generated in situ using precursors, but very few physiologically useful RSSH precursors have been developed to date. In this work, we report the design, synthesis, and evaluation of novel S-substituted thiosiothioureas as RSSH precursors. These water-soluble precursors show efficient and controllable release of RSSH under physiological conditions.

7.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760062

RESUMEN

Hydrogen sulfide (H2S) has emerged as a third small-molecule bioactive signaling agent, along with nitric oxide (NO) and carbon monoxide (CO) [...].

8.
Redox Biol ; 60: 102625, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36773545

RESUMEN

Cardiotoxicity is a frequent and often lethal complication of doxorubicin (DOX)-based chemotherapy. Here, we report that hydropersulfides (RSSH) are the most effective reactive sulfur species in conferring protection against DOX-induced toxicity in H9c2 cardiac cells. Mechanistically, RSSH supplementation alleviates the DOX-evoked surge in reactive oxygen species (ROS), activating nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways, thus boosting endogenous antioxidant defenses. Simultaneously, RSSH turns on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a master regulator of mitochondrial function, while decreasing caspase-3 activity to inhibit apoptosis. Of note, we find that RSSH potentiate anticancer DOX effects in three different cancer cell lines, with evidence that suggests this occurs via induction of reductive stress. Indeed, cancer cells already exhibit much higher basal hydrogen sulfide (H2S), sulfane sulfur, and reducing equivalents compared to cardiac cells. Thus, RSSH may represent a new promising avenue to fend off DOX-induced cardiotoxicity while boosting its anticancer effects.


Asunto(s)
Cardiotoxicidad , Estrés Oxidativo , Humanos , Apoptosis , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/farmacología
9.
Chem Commun (Camb) ; 59(85): 12751-12754, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37811588

RESUMEN

The cross-talk among reductive and oxidative species (redox cross-talk), especially those derived from sulfur, nitrogen and oxygen, influence several physiological processes including aging. One major hallmark of aging is cellular senescence, which is associated with chronic systemic inflammation. Here, we report a chemical tool that generates nitoxyl (HNO) upon activation by ß-galactosidase, an enzyme that is over-expressed in senescent cells. In a radiation-induced senescence model, the HNO donor suppressed reactive oxygen species (ROS) in a hydrogen sulfide (H2S)-dependent manner. Hence, the newly developed tool provides insights into redox cross-talk and establishes the foundation for new interventions that modulate levels of these species to mitigate oxidative stress and inflammation.


Asunto(s)
Inflamación , Óxidos de Nitrógeno , Humanos , Oxidación-Reducción , Senescencia Celular , beta-Galactosidasa
10.
Bioorg Med Chem Lett ; 22(11): 3766-9, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22542016

RESUMEN

Here we report a series of 2-aryl-3-amino-1,4-naphthoquinones that generated reactive oxygen species (ROS) such as superoxide and hydrogen peroxide upon incubation in pH 7.4 under ambient aerobic conditions. ROS generation from these compounds was sensitive to structural modifications at the 3-amino position and a 2-aryl substituent promoted ROS generation. A number of these compounds were found to induce DNA damage in the presence of Cu(II) without any added reducing agent. Our data suggests that 2-aryl-3-amino-1,4-naphthoquinones' propensity to produce ROS correlated well with its DNA damage inducing ability. 2-Phenyl-3-pyrrolid-1-yl-1,4-naphthoquinone (22) was found to damage DNA at 1 µM suggesting that these compounds may have therapeutic relevance in targeting cancers which over-express Cu(II).


Asunto(s)
Cobre/química , Desoxirribonucleasas/metabolismo , Naftoquinonas/química , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Concentración de Iones de Hidrógeno , Naftoquinonas/síntesis química , Plásmidos/química , Plásmidos/metabolismo
11.
Antioxid Redox Signal ; 36(4-6): 309-326, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34278824

RESUMEN

Significance: Hydropersulfides (RSSH) are ubiquitous in prokaryotes, eukaryotic cells, and mammalian tissues. The unique chemical properties and prevalent nature of these species suggest a crucial role of RSSH in cell regulatory processes, yet little is known about their physiological functions. Recent Advances: Examining the biological roles of RSSH species is challenging because of their inherent instability. In recent years, researchers have developed a number of small-molecule donors that efficiently release RSSH in response to various stimuli, including pH, thiols, reactive oxygen species, enzymes, and light. These RSSH donors have provided researchers with chemical tools to uncover the potential function and role of RSSH as physiological signaling and/or protecting agents. Critical Issues: Because RSSH, hydrogen sulfide (H2S), and higher order polysulfides are related to each other and can be present simultaneously in biological systems, distinguishing among the activities due to each of these species is difficult. Discerning this activity is critical to elucidate the chemical biology and physiology of RSSH. Moreover, although RSSH donors have been shown to confer cytoprotection against oxidative and electrophilic stress, their biological targets remain to be elucidated. Future Directions: The development of RSSH donors with optimal drug-like properties and selectivity toward specific tissues/pathologies represents a promising approach. Further investigation of releasing efficiencies in vivo and a clear understanding of RSSH biological responses remain targets for future investigation. Antioxid. Redox Signal. 36, 309-326.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuros , Animales , Biología , Citoprotección , Sulfuro de Hidrógeno/química , Mamíferos , Oxidación-Reducción , Compuestos de Sulfhidrilo/química , Sulfuros/química
12.
Antioxidants (Basel) ; 11(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35624878

RESUMEN

Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based post-translational modifications of protein cysteine residues forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysulfides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2 cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while preserving cell viability.

13.
Free Radic Biol Med ; 188: 459-467, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809768

RESUMEN

S-Nitrosothiol (RS-NO) generation/levels have been implicated as being important to numerous physiological and pathophysiological processes. As such, the mechanism(s) of their generation and degradation are important factors in determining their biological activity. Along with the effects on the activity of thiol proteins, RS-NOs have also been reported to be reservoirs or storage forms of nitric oxide (NO). That is, it is hypothesized that NO can be released from RS-NO at opportune times to, for example, regulate vascular tone. However, to date there are few established mechanisms that can account for facile NO release from RS-NO. Recent discovery of the biological formation and prevalence of hydropersulfides (RSSH) and their subsequent reaction with RS-NO species provides a possible route for NO release from RS-NO. Herein, it is found that RSSH is capable of reacting with RS-NO to liberate NO and that the analogous reaction using RSH is not nearly as proficient in generating NO. Moreover, computational results support the prevalence of this reaction over other possible competing processes. Finally, results of biological studies of NO-mediated vasorelaxation are consistent with the idea that RS-NO species can be degraded by RSSH to release NO.


Asunto(s)
Óxido Nítrico , S-Nitrosotioles , Óxido Nítrico/metabolismo , Proteínas/metabolismo , Compuestos de Sulfhidrilo
14.
Chem Sci ; 12(23): 8252-8259, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34194717

RESUMEN

The recent discovery of the prevalence of hydropersulfides (RSSH) species in biological systems suggests their potential roles in cell regulatory processes. However, the reactive and transient nature of RSSH makes their study difficult, and dependent on the use of donor molecules. Herein, we report alkylsulfenyl thiocarbonates as a new class of RSSH precursors that efficiently release RSSH under physiologically relevant conditions. RSSH release kinetics from these precursors are tunable through electronic modification of the thiocarbonate carbonyl group's electrophilicity. In addition, these precursors also react with thiols to release RSSH with a minor amount of carbonyl sulfide (COS). Importantly, RSSH generation by these precursors protects against oxidative stress in H9c2 cardiac myoblasts. Furthermore, we demonstrate the ability of these precursors to increase intracellular RSSH levels.

15.
Antioxid Redox Signal ; 33(18): 1295-1307, 2020 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-32103674

RESUMEN

Significance: Hydropersulfides (RSSH) and related polysulfide species (RSnR, n > 2, R = alkyl, H) are highly biologically prevalent with likely important physiological functions. Due to their prevalence, many labs have begun to investigate their possible roles, especially with regards to their protective, redox, and signaling properties. Recent Advances: A significant amount of work has been performed while delineating the chemical reactivity/chemical properties of hydropersulfides, and it is clear that their overall chemistry is distinct from all other biologically relevant sulfur species (e.g., thiols, disulfides, sulfenic acids, etc.). Critical Issues: One way to predict and ultimately understand the biological functions of hydropersulfides is to focus on their unique chemistry, which should provide the rationale for why this unique functionality is present. Interestingly, some of the chemical properties of RSSH are strikingly similar to those of selenols (RSeH). Therefore, it may be important to consider the known functions of selenoproteins when speculating about the possible functions of RSSH species. Future Directions: Currently, many of the inherent chemical differences between hydropersulfides and other biological sulfur species have been established. It remains to be determined, however, whether and how these differences are utilized to accomplish specific biochemical/physiological goals. A significant aspect of elucidating the biological utility of hydropersulfides will be to determine the mechanisms of regulation of their formation and/or biosynthesis, that is, based on whether it can be determined under what cellular conditions hydropersulfides are made, more meaningful speculation regarding their functions/roles can be developed.


Asunto(s)
Compuestos de Selenio/química , Sulfuros/química , Oxidación-Reducción , Compuestos de Selenio/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/química , Sulfuros/metabolismo
16.
Chem Sci ; 8(7): 4967-4972, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959420

RESUMEN

Understanding the mechanisms of antimicrobial resistance (AMR) will help launch a counter-offensive against human pathogens that threaten our ability to effectively treat common infections. Herein, we report bis(4-nitrobenzyl)sulfanes, which are activated by a bacterial enzyme to produce hydrogen sulfide (H2S) gas. We found that H2S helps maintain redox homeostasis and protects bacteria against antibiotic-triggered oxidative stress "on demand", through activation of alternate respiratory oxidases and cellular antioxidants. We discovered, a hitherto unknown role for this gas, that chemical inhibition of H2S biosynthesis reversed antibiotic resistance in multidrug-resistant (MDR) uropathogenic Escherichia coli strains of clinical origin, whereas exposure to the H2S donor restored drug tolerance. Together, our study provides a greater insight into the dynamic defence mechanisms of this gas, modes of antibiotic action as well as resistance while progressing towards new pharmacological targets to address AMR.

17.
Org Lett ; 18(6): 1274-7, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26933774

RESUMEN

2-Methyl-3-[1-(N,N-dimethylamino)diazen-1-ium-1,2-diol-2-ato-methyl]-naphthalene-1,4-dione 1 (HyPR-1), a small molecule containing a superoxide generator strategically linked to a diazeniumdiolate-based nitric oxide donor, is reported. Evidence for HyPR-1's ability to generate peroxynitrite in the presence of an enzyme as well as enhance peroxynitrite within cells is provided. The utility of this tool in generating peroxynitrite for cellular studies is demonstrated.


Asunto(s)
Naftoquinonas/síntesis química , Ácido Peroxinitroso/química , Compuestos Azo/química , Estructura Molecular , Naftoquinonas/química , Donantes de Óxido Nítrico/química
18.
ACS Med Chem Lett ; 5(7): 777-81, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25050164

RESUMEN

The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA