RESUMEN
BACKGROUND: Generation of thymic tissue from pluripotent stem cells would provide therapies for acquired and congenital thymic insufficiency states. OBJECTIVES: This study aimed to generate human thymic epithelial progenitors from human embryonic stem cells (hES-TEPs) and to assess their thymopoietic function in vivo. METHODS: This study differentiated hES-TEPs by mimicking developmental queues with FGF8, retinoic acid, SHH, Noggin, and BMP4. Their function was assessed in reaggregate cellular grafts under the kidney capsule and in hybrid thymi by incorporating them into swine thymus (SwTHY) grafts implanted under the kidney capsules of immunodeficient mice that received human hematopoietic stem and progenitor cells (hHSPCs) intravenously. RESULTS: Cultured hES-TEPs expressed FOXN1 and formed colonies expressing EPCAM and both cortical and medullary thymic epithelial cell markers. In thymectomized immunodeficient mice receiving hHSPCs, hES-TEPs mixed with human thymic mesenchymal cells supported human T-cell development. Hypothesizing that support from non-epithelial thymic cells might allow long-term function of hES-TEPs, the investigators injected them into SwTHY tissue, which supports human thymopoiesis in NOD severe combined immunodeficiency IL2Rγnull mice receiving hHSPCs. hES-TEPs integrated into SwTHY grafts, enhanced human thymopoiesis, and increased peripheral CD4+ naive T-cell reconstitution. CONCLUSIONS: This study has developed and demonstrated in vivo thymopoietic function of hES-TEPs generated with a novel differentiation protocol. The SwTHY hybrid thymus model demonstrates beneficial effects on human thymocyte development of hES-TEPs maturing in the context of a supportive thymic structure.
Asunto(s)
Células Epiteliales , Timocitos , Animales , Diferenciación Celular , Células Epiteliales/fisiología , Epitelio , Humanos , Ratones , Ratones Endogámicos NOD , TimoRESUMEN
T cells are implicated in the pathogenesis of cardiac allograft vasculopathy (CAV), yet their clonality, specificity, and function are incompletely defined. Here we used T cell receptor ß chain (TCRB) sequencing to study the T cell repertoire in the coronary artery, endomyocardium, and peripheral blood at the time of retransplant in four cases of CAV and compared it to the immunoglobulin heavy chain variable region (IGHV) repertoire from the same samples. High-dimensional flow cytometry coupled with single-cell PCR was also used to define the T cell phenotype. Extensive overlap was observed between intragraft and blood TCRBs in all cases, a finding supported by robust quantitative diversity metrics. In contrast, blood and graft IGHV repertoires from the same samples showed minimal overlap. Coronary infiltrates included CD4+ and CD8+ memory T cells expressing inflammatory (IFNγ, TNFα) and profibrotic (TGFß) cytokines. These were distinguishable from the peripheral blood based on memory, activation, and tissue residency markers (CD45RO, CTLA-4, and CD69). Importantly, high-frequency rearrangements were traced back to endomyocardial biopsies (2-6 years prior). Comparison with four HLA-mismatched blood donors revealed a repertoire of shared TCRBs, including a subset of recently described cross-reactive sequences. These findings provide supportive evidence for an active local intragraft bystander T cell response in late-stage CAV.
Asunto(s)
Trasplante de Corazón , Aloinjertos , Vasos Coronarios , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Humanos , Linfocitos TRESUMEN
We developed a rapid method to remove the native mouse thymus from NSG mice, which allowed us to compare the behavior of human immune cells in the presence or absence of human T cells in human immune system mice. Removing the native mouse thymus is critical for studies of human thymopiesis in grafted thymic tissue in humanized mice.
Asunto(s)
Timectomía/métodos , Timo/inmunología , Timo/trasplante , Trasplante Heterólogo/métodos , Animales , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCIDRESUMEN
We evaluated the role of the thymus in development of multi-organ autoimmunity in human immune system (HIS) mice. T cells were essential for disease development and the same T cell clones with varying phenotypes infiltrated multiple tissues. De novo-generated hematopoietic stem cell (HSC)-derived T cells were the major disease drivers, though thymocytes pre-existing in grafted human thymi contributed if not first depleted. HIS mice with a native mouse thymus developed disease earlier than thymectomized mice with a thymocyte-depleted human thymus graft. Defective structure in the native mouse thymus was associated with impaired negative selection of thymocytes expressing a transgenic TCR recognizing a self-antigen. Disease developed without direct recognition of antigens on recipient mouse MHC. While human thymus grafts had normal structure and negative selection, failure to tolerize human T cells recognizing mouse antigens presented on HLA molecules may explain eventual disease development. These new insights have implications for human autoimmunity and suggest methods of avoiding autoimmunity in next-generation HIS mice.
Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Susceptibilidad a Enfermedades/inmunología , Timo/inmunología , Timo/metabolismo , Animales , Antígenos , Enfermedades Autoinmunes/patología , Biomarcadores , Selección Clonal Mediada por Antígenos/inmunología , Modelos Animales de Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfopoyesis/genética , Linfopoyesis/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Especificidad de Órganos/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
BACKGROUND: A major obstacle to the success of organ transplantation from pigs to humans, necessitated by the shortage of human organs, is robust humoral immune rejection by pig-reactive human antibodies. Mixed xenogeneic hematopoietic chimerism induces xenoreactive B cell tolerance in rodents, but whether mixed pig/human chimerism could induce tolerance of human B cells to pig xenoantigens is unknown. METHODS: We investigated this question using a humanized mouse model in which durable mixed (pig-human) xenogeneic chimerism can be established. RESULTS: Human natural anti-pig cytotoxic antibodies, predominantly IgM, are detectable in non-chimeric humanized mouse serum, and pig-reactive antibodies were reduced in mixed chimeric versus non-chimeric humanized mice. This difference required persistent mixed chimerism and was not due to the adsorption of antibodies on pig cells in vivo. Furthermore, human B cells from spleens of mixed chimeric mice produced lower levels of anti-pig antibodies when stimulated in vitro compared with those from non-chimeric mice. CONCLUSIONS: Our findings demonstrate that mixed chimerism reduces human natural antibodies to pig xenoantigens, providing the first in vivo evidence of human B cell tolerance induction by mixed xenogeneic chimerism and supporting further evaluation of this approach for inducing human B cell tolerance to xenografts.
Asunto(s)
Quimerismo , Tolerancia Inmunológica , Animales , Antígenos Heterófilos , Linfocitos B , Trasplante de Médula Ósea , Humanos , Ratones , Porcinos , Trasplante HeterólogoRESUMEN
BACKGROUND: Tolerance-inducing approaches to xenotransplantation would be optimal and may be necessary for long-term survival of transplanted pig organs in human patients. The ideal approach would generate donor-specific unresponsiveness to the pig organ without suppressing the patient's normal immune function. Porcine thymus transplantation has shown efficacy in promoting xenotolerance in humanized mice and large animal models. However, murine studies demonstrate that T cells selected in a swine thymus are positively selected only by swine thymic epithelial cells, and therefore, cells expressing human HLA-restricted TCRs may not be selected efficiently in a transplanted pig thymus. This may lead to suboptimal patient immune function. METHODS: To assess human thymocyte selection in a pig thymus, we used a TCR transgenic humanized mouse model to study positive selection of cells expressing the MART1 TCR, a well-characterized human HLA-A2-restricted TCR, in a grafted pig thymus. RESULTS: Positive selection of T cells expressing the MART1 TCR was inefficient in both a non-selecting human HLA-A2- or swine thymus compared with an HLA-A2+ thymus. Additionally, CD8 MART1 TCRbright T cells were detected in the spleens of mice transplanted with HLA-A2+ thymi but were significantly reduced in the spleens of mice transplanted with swine or HLA-A2- thymi. [Correction added on October 15, 2019, after first online publication: The missing superscript values +, -, and bright have been included in the Results section.] CONCLUSIONS: Positive selection of cells expressing a human-restricted TCR in a transplanted pig thymus is inefficient, suggesting that modifications to improve positive selection of cells expressing human-restricted TCRs in a pig thymus may be necessary to support development of a protective human T-cell pool in future patients.
Asunto(s)
Linfocitos T CD8-positivos/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Timo/fisiología , Animales , Células Cultivadas , Selección Clonal Mediada por Antígenos , Antígeno HLA-A2/metabolismo , Humanos , Tolerancia Inmunológica , Antígeno MART-1/inmunología , Ratones , Ratones SCID , Ratones Transgénicos , Trasplante de Órganos , Porcinos , Trasplante HeterólogoRESUMEN
There is an urgent and unmet need for humanized in vivo models of type 1 diabetes to study immunopathogenesis and immunotherapy, and in particular antigen-specific therapy. Transfer of patient blood lymphocytes to immunodeficient mice is associated with xenogeneic graft-versus-host reactivity that complicates assessment of autoimmunity. Improved models could identify which human T cells initiate and participate in beta-cell destruction and help define critical target islet autoantigens. We used humanized mice (hu-mice) containing robust human immune repertoires lacking xenogeneic graft-versus-host reactivity to address this question. Hu-mice constructed by transplantation of HLA-DQ8+ human fetal thymus and CD34+ cells into HLA-DQ8-transgenic immunodeficient mice developed hyperglycemia and diabetes after transfer of autologous HLA-DQ8/insulin-B:9-23 (InsB:9-23)-specific T-cell receptor (TCR)-expressing human CD4+ T cells and immunization with InsB:9-23. Survival of the infused human T cells depended on the preexisting autologous human immune system, and pancreatic infiltration by human CD3+ T cells and insulitis were observed in the diabetic hu-mice, provided their islets were stressed by streptozotocin. This study fits Koch's postulate for pathogenicity, demonstrating a pathogenic role of islet autoreactive CD4+ T-cell responses in type 1 diabetes induction in humans, underscores the role of the target beta-cells in their immunological fate, and demonstrates the capacity to initiate disease with T cells, recognizing the InsB:9-23 epitope in the presence of islet inflammation. This preclinical model has the potential to be used in studies of the pathogenesis of type 1 diabetes and for testing of clinically relevant therapeutic interventions.
Asunto(s)
Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Antígenos HLA-DQ/inmunología , Células Secretoras de Insulina/inmunología , Insulina/inmunología , Fragmentos de Péptidos/inmunología , Animales , Autoinmunidad , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones TransgénicosRESUMEN
BACKGROUND: We have achieved greater than a 6-month survival of a life-supporting kidney co-transplanted with a vascularized thymic graft into non-human primates (NHPs). Although we have achieved pig-specific unresponsiveness in vitro, immunosuppression was not able to be fully weaned. Studies in mice and humanized mice suggest that a hybrid pig thymus (Hyb-thy)-containing host thymic epithelial cells (TECs) can optimize intra-thymic selection, achieving xenograft tolerance with improved reconstitution of T-cell function. METHODS: We have tested the feasibility of the preparation of a Hyb-thy that contains NHP TECs in the donor thymic grafts. We first prepared the Hyb-thy in the donor pigs 2-3 weeks before xeno-Tx. We performed six cases of Hyb-thy preparation in six juvenile miniature swine. Two pigs received non-manipulated cynomolgus monkey thymic cells that were isolated from an excised atrophic thymus via injection into their thymic lobes (Group 1). The remaining four received thymic cells that were isolated from non-atrophic thymic glands (Groups 2 and 3). Pigs in Group 2 received unmanipulated thymic cells in one thymic lobe, as well as CD2-positive cell-depleted TEC-enriched cells in the contralateral lobe. Pigs in Group 3 received TEC-enriched cells alone. RESULTS: All thymus-injected pigs received tacrolimus and rapamycin until endpoint (POD16). We detected cynomolgus monkey TEC networks in pig thymus from Groups 1 and 3, while pigs in Group 2 rejected the thymic cells. We demonstrated the preparation of Hyb-thy in pigs using tacrolimus plus rapamycin therapy. CONCLUSIONS: Our results suggest that the enrichment of TEC from the excised NHP thymus facilitated NHP TEC engraftment in pig thymus.
Asunto(s)
Células Epiteliales/inmunología , Rechazo de Injerto/inmunología , Supervivencia de Injerto/inmunología , Timo/inmunología , Animales , Tolerancia Inmunológica/inmunología , Terapia de Inmunosupresión/métodos , Macaca fascicularis , Primates , Porcinos , Porcinos Enanos , Trasplante Heterólogo/métodosRESUMEN
Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme with tolerogenic effects on different immune cells. Our group has previously shown that co-transplantation of IDO-expressing fibroblasts with donor tissues can delay immune rejection by inducing local immunosuppression. In this study, we have employed a systemic approach to improve allograft survival without using any immunosuppressive medication. To achieve this, 10 million lentiviral transduced IDO-expressing donor derived fibroblasts were injected into the peritoneal cavity of allograft recipients. We showed that IDO-fibroblast therapy increases the survival of both islets and skin allografts and decreases the infiltration of immune cells in subcutaneous transplanted skins. Indirect pathway of allo-reactive T cell activation was suppressed more than the direct pathway. Injected IDO-fibroblasts were found in peritoneal cavity and mesenteric lymph nodes of the recipient mice. In conclusion, IDO-expressing fibroblast therapy proved to be a novel approach in improving the allogeneic graft survival.
Asunto(s)
Fibroblastos/trasplante , Supervivencia de Injerto , Indolamina-Pirrol 2,3,-Dioxigenasa , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/sangre , Femenino , Inyecciones Intraperitoneales , Trasplante de Islotes Pancreáticos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Piel/citología , Piel/inmunología , Linfocitos T Reguladores/inmunología , Trasplante HomólogoRESUMEN
Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1ß and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1ß levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Diabetes Mellitus Experimental/inmunología , Fibroblastos/enzimología , Hiperglucemia/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Secretoras de Insulina/inmunología , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Hiperglucemia/inmunología , Células Secretoras de Insulina/enzimología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Linfocitos T Reguladores/inmunologíaRESUMEN
There is controversy about the immunomodulatory effect of fibroblasts on dendritic cells (DCs). To clarify this issue, in this study, we have evaluated different features of fibroblast-primed DCs including their ability to express co-inhibitory and co-stimulatory molecules, pro-inflammatory and anti-inflammatory cytokines and their ability to induce T-cell proliferation. We also examined migratory capacity of DCs to lymphatic tissues and present fibroblast-derived antigens after encountering fibroblasts. The results of our in vitro study showed that both co-inhibitory (programmed death ligand 1 and ligand 2 and B7H4) and co-stimulatory (CD86) molecules were up-regulated when DCs were co-cultured with fibroblasts. In an animal model, we showed that intra- peritoneal injection (IP) of both syngeneic and allogeneic fibroblasts significantly increased both total DC count and expression level of co-inhibitory and co-stimulatory molecules on DCs. Priming of DCs with syngeneic and allogeneic fibroblasts reduced the proliferation of CD4(+) and CD8(+) T cells. Even activation of fibroblast- primed DCs failed to restore their ability to induce T-cell proliferation. Likewise, priming of DCs with fibroblasts blocked the ability of ovalbumin-pulsed DCs to induce proliferation of ovalbumin-specific CD4(+) T cells. Compared with non-activated DCs, fibroblast-primed DCs had significantly higher expression levels of interleukin-10 and indoleamine 2, 3 dioxygenase. Fibroblast-primed DCs had a significantly reduced interleukin-12 expression level compared with that of activated DCs. After priming with fibroblasts, DCs were able to migrate to lymphatic tissues and present fibroblast-derived antigens (ovalbumin). In conclusion, after priming with fibroblasts, DCs gain tolerogenic features. This finding suggests the potential role of fibroblasts in the maintenance of immune tolerance.
Asunto(s)
Células Dendríticas/inmunología , Fibroblastos/fisiología , Tolerancia Inmunológica , Animales , Presentación de Antígeno , Células Cultivadas , Técnicas de Cocultivo , Citocinas/análisis , Femenino , Activación de Linfocitos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BLRESUMEN
Skin transplantation provides an excellent potential model to investigate the immunology of allograft rejection and tolerance induction. Despite the theoretical ease of performing skin transplantation, as well as the potential of directly observing the reaction to the transplanted tissue, the poor reliability of skin transplantation in the mouse has largely precluded the use of this model. Furthermore, there is controversy regarding the most appropriate skin graft donor site due to poor success of back skin transplantation, as compared with the thinner ear or tail skin. This study demonstrates a reliable method to successfully perform skin grafts in a mouse model, as well as the clinical and histologic outcome of syngeneic grafts. A total of 287 grafts were performed (in 126 mice) utilizing donor skin from the ear, tail or back. No graft failure or postoperative mortality was observed. Comparison of this technique with two previously established protocols of skin transplantation (5.0 absorbable Suture + tissue glue technique and no-suture technique) demonstrates the significant improvement in the engraftment success of the new technique. In summary, a new technique for murine skin grafting demonstrates improved reliability across donor site locations and strains, increasing the potential for investigating interventions to alter the rejection process.
Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/inmunología , Supervivencia de Injerto/inmunología , Tolerancia Inmunológica , Trasplante de Piel/métodos , Cicatrización de Heridas/fisiología , Aloinjertos/irrigación sanguínea , Animales , Vendajes , Modelos Animales de Enfermedad , Rechazo de Injerto/fisiopatología , Supervivencia de Injerto/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Reproducibilidad de los ResultadosRESUMEN
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdc scid Il2rg tm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1 + CD4 + peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. T cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies and LIP have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
RESUMEN
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas Represoras/metabolismoRESUMEN
The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.
Asunto(s)
Antígeno B7-H1 , Melanoma , Ratones , Animales , Antígeno B7-H1/genética , Linfocitos T , Antígenos CD58/química , Antígenos CD58/metabolismo , Melanoma/genética , Melanoma/metabolismo , Activación de LinfocitosRESUMEN
BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to ß-cell antigens and progressive destruction of insulin-producing ß-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW: Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS: To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animales , Diabetes Mellitus Tipo 1/genética , Humanos , Sistema Inmunológico/patología , Células Secretoras de Insulina/patología , RatonesRESUMEN
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Autoinmunidad , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Selección Clonal Mediada por Antígenos , Susceptibilidad a Enfermedades/inmunología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Rechazo de Injerto , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Tolerancia Inmunológica , Inmunidad , Modelos Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Inmunología del Trasplante , Trasplante Homólogo , Recombinación V(D)JRESUMEN
Antigen-specific immunotherapy (ASIT) offers a targeted treatment of autoimmune diseases that selectively inhibits autoreactive lymphocytes, but there remains an unmet need for approaches that address the limited clinical efficacy of ASIT. Soluble antigen arrays (SAgAs) deliver antigenic peptides or proteins in multivalent form, attached to a hyaluronic acid backbone using either hydrolysable linkers (hSAgAs) or stable click chemistry linkers (cSAgAs). They were evaluated for the ability to block spontaneous development of disease in a nonobese diabetic mouse model of type 1 diabetes (T1D). Two peptides, a hybrid insulin peptide and a mimotope, efficiently prevented the onset of T1D when delivered in combination as SAgAs, but not individually. Relative to free peptides administered at equimolar dose, SAgAs (particularly cSAgAs) enabled a more effective engagement of antigen-specific T cells with greater persistence and induction of tolerance markers, such as CD73, interleukin-10, programmed death-1, and KLRG-1. Anaphylaxis caused by free peptides was attenuated using hSAgA and obviated using cSAgA platforms. Despite similarities, the two peptides elicited largely nonoverlapping and possibly complementary responses among endogenous T cells in treated mice. Thus, SAgAs offer a novel and promising ASIT platform superior to free peptides in inducing tolerance while mitigating risks of anaphylaxis for the treatment of T1D.
Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Péptidos/farmacocinética , Análisis por Matrices de Proteínas , Animales , Autoantígenos/inmunología , Química Clic , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/inmunología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Femenino , Inmunoterapia/instrumentación , Inmunoterapia/métodos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Péptidos/administración & dosificación , Inducción de Remisión/métodos , Solubilidad , Resultado del TratamientoRESUMEN
Chimeric immune receptors (CIRs) are functionally pleiotropic because they are artificially expressed on diverse cell types, which gives specificity to their function to anergize, kill, or protect cognate target cells. CIRs consist of chimeric antigen receptors (CARs) and B-cell antibody receptor (BAR) or chimeric autoantibody receptors (CAARs). Approval of CAR-T cell therapy by the Food and Drug Administration (FDA) has encouraged investigators to search for autoimmune therapies that are CIR-based. Both T effector cells, particularly CD8+, and T CD4+ regulatory cells (Tregs) can be engineered through CIR expression. Recently, natural killer cells have been included to increase efficiency. Unwanted antibody producer B cells are effectively prevented by CAAR-T cells, B-cell antibody receptor (BAR)-T CD8+, and BAR-Treg, which represents an advantage in antibody-mediated diseases such as pemphigus vulgaris (PV) and hemophilia A. Although CAAR and BAR-T cells may have curative benefits for autoantibody-mediated immune diseases, verification of long-term efficacy and safety are a priority before clinical use. Effective CIR-T cell therapy largely depends on the reliability and stability of the receptor. Based on CIR functionality, factors that explicitly determine effectiveness of the treatment should be considered. These factors include antigen/autoantibody specificity, single chain variable fragment (scFv) affinity, and autoantibody masking. Herein, we review the current evidence of CIR therapy with a focus on their therapeutic potential for autoimmune diseases and their challenges.