Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768442

RESUMEN

Ribosome biogenesis is a complex and highly accurate conservative process of ribosomal subunit maturation followed by association. Subunit maturation comprises sequential stages of ribosomal RNA and proteins' folding, modification and binding, with the involvement of numerous RNAses, helicases, GTPases, chaperones, RNA, protein-modifying enzymes, and assembly factors. One such assembly factor involved in bacterial 30S subunit maturation is ribosomal binding factor A (RbfA). In this study, we present the crystal (determined at 2.2 Å resolution) and NMR structures of RbfA as well as the 2.9 Å resolution cryo-EM reconstruction of the 30S-RbfA complex from Staphylococcus aureus (S. aureus). Additionally, we show that the manner of RbfA action on the small ribosomal subunit during its maturation is shared between bacteria and mitochondria. The obtained results clarify the function of RbfA in the 30S maturation process and its role in ribosome functioning in general. Furthermore, given that S. aureus is a serious human pathogen, this study provides an additional prospect to develop antimicrobials targeting bacterial pathogens.


Asunto(s)
Proteínas de Escherichia coli , Staphylococcus aureus Resistente a Meticilina , Humanos , Proteínas Ribosómicas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Escherichia coli/metabolismo , Bacterias/metabolismo , Mitocondrias/metabolismo , ARN Ribosómico 16S/metabolismo
2.
EMBO J ; 36(14): 2073-2087, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28645916

RESUMEN

In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress-induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation-promoting factor (SaHPF) that we solved using cryo-electron microscopy. Our reconstructions reveal that the N-terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C-terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD-dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dimerización , Ribosomas/metabolismo , Ribosomas/ultraestructura , Staphylococcus aureus/metabolismo , Staphylococcus aureus/ultraestructura , Microscopía por Crioelectrón , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Ribosómico 16S/metabolismo
3.
J Struct Biol ; 209(1): 107408, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669310

RESUMEN

Staphylococcus aureus hibernation promoting factor (SaHPF) is responsible for the formation of 100S ribosome dimers, which in turn help this pathogen to reduce energy spent under unfavorable conditions. Ribosome dimer formation strongly depends on the dimerization of the C-terminal domain of SaHPF (CTDSaHPF). In this study, we solved the crystal structure of CTDSaHPF at 1.6 Šresolution and obtained a precise arrangement of the dimer interface. Residues Phe160, Val162, Thr171, Ile173, Tyr175, Ile185 andThr187 in the dimer interface of SaHPF protein were mutated and the effects were analyzed for the formation of 100S disomes of ribosomes isolated from S. aureus. It was shown that substitution of any of single residues Phe160, Val162, Ile173, Tyr175 and Ile185 in the SaHPF homodimer interface abolished the ribosome dimerization in vitro.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Dimerización , Hibernación/genética , Humanos , Unión Proteica/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
4.
Eur Biophys J ; 49(3-4): 223-230, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32152681

RESUMEN

Elongation factor P (EF-P) is a translation protein factor that plays an important role in specialized translation of consecutive proline amino acid motifs. EF-P is an essential protein for cell fitness in native environmental conditions. It regulates synthesis of proteins involved in bacterial motility, environmental adaptation and bacterial virulence, thus making EF-P a potential drug target. In the present study, we determined the solution and crystal structure of EF-P from the pathogenic bacteria Staphylococcus aureus at 1.48 Å resolution. The structure can serve as a platform for structure-based drug design of novel antibiotics to combat the growing antibiotic resistance of S. aureus.


Asunto(s)
Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Factores de Elongación de Péptidos/química , Staphylococcus aureus , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Factores de Elongación de Péptidos/metabolismo , Dominios Proteicos
5.
J Biomol NMR ; 73(5): 223-227, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31165320

RESUMEN

Staphylococcus aureus hibernation promoting factor (SaHPF) is a 22,2 kDa protein which plays a crucial role in 100S Staphylococcus aureus ribosome formation during stress. SaHPF consists of N-terminal domain (NTD) that prevents proteins synthesis by binding to the 30S subunit at the P- and A-sites, connected through a flexible linker with a C-terminal domain (CTD) that keeps ribosomes in 100S form via homodimerization. Recently obtained 100S ribosome structure of S. aureus by cryo-EM shown that SaHPF-NTD bound to the ribosome active sites, however due to the absence of SaHPF-NTD structure it was modeled by homology with the E. coli hibernation factors HPF and YfiA. In present paper we have determined the solution structure of SaHPF-NTD by high-resolution NMR spectroscopy which allows us to increase structural knowledge about HPF structure from S. aureus.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
6.
Nucleic Acids Res ; 44(21): 10491-10504, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906650

RESUMEN

Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence could account for vital yet species-specific mechanisms of translation regulation that would involve stalling, cell survival and antibiotic resistance. Here, we present the first full 70S ribosome structure from Staphylococcus aureus, a Gram-positive pathogenic bacterium, solved by cryo-electron microscopy. Comparative analysis with other known bacterial ribosomes pinpoints several unique features specific to S. aureus around a conserved core, at both the protein and the RNA levels. Our work provides the structural basis for the many studies aiming at understanding translation regulation in S. aureus and for designing drugs against this often multi-resistant pathogen.


Asunto(s)
Proteínas Bacterianas/química , Biosíntesis de Proteínas , ARN Bacteriano/química , Proteínas Ribosómicas/química , Ribosomas/ultraestructura , Staphylococcus aureus/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
8.
Nat Commun ; 15(1): 4783, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839776

RESUMEN

Ribosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets. Here we compare two E. coli strains, a lab E. coli K-12 and human gut isolate E. coli ED1a, for which tetracycline exhibits bacteriostatic and bactericidal action, respectively. Using our approach for close-to-native E. coli sample preparation, we assess the two strains by cryo-ET and visualize their ribosomes at high resolution in situ. Upon tetracycline treatment, these exhibit virtually identical drug binding sites, yet the conformation distribution of ribosomal complexes differs. While K-12 retains ribosomes in a translation-competent state, tRNAs are lost in the vast majority of ED1a ribosomes. These structural findings together with the proteome-wide abundance and thermal stability assessments indicate that antibiotic responses are complex in cells and can differ between different strains of a single species, thus arguing that all relevant bacterial strains should be analyzed in situ when addressing antibiotic mode of action.


Asunto(s)
Antibacterianos , Escherichia coli , Ribosomas , Tetraciclina , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Tetraciclina/farmacología , Microscopía por Crioelectrón , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Humanos , Sitios de Unión , Biosíntesis de Proteínas/efectos de los fármacos , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo
9.
Nat Struct Mol Biol ; 31(7): 1105-1113, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38316878

RESUMEN

Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.


Asunto(s)
Microscopía por Crioelectrón , Virus Vaccinia , Virus Vaccinia/ultraestructura , Humanos , Multimerización de Proteína , Tomografía con Microscopio Electrónico , Modelos Moleculares , Virión/ultraestructura , Virión/metabolismo
10.
Science ; 381(6653): 70-75, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410833

RESUMEN

Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution. These structures revealed the distribution of functional states of the elongation cycle, a Z transfer RNA binding site, and the dynamics of ribosome expansion segments. Ribosome structures from cells treated with Homoharringtonine, a drug used against chronic myeloid leukemia, revealed how translation dynamics were altered in situ and resolve the small molecules within the active site of the ribosome. Thus, structural dynamics and drug effects can be assessed at high resolution within human cells.


Asunto(s)
Antineoplásicos , Neoplasias , Biosíntesis de Proteínas , Humanos , Antineoplásicos/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Neoplasias/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/química , Ribosomas/metabolismo , ARN de Transferencia/metabolismo
11.
Bio Protoc ; 12(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36353712

RESUMEN

The ribosome is a complex cellular machinery whose solved structure allowed for an incredible leap in structural biology research. Different ions bind to the ribosome, stabilizing inter-subunit interfaces and structurally linking rRNAs, proteins, and ligands. Besides cations such as K + and Mg 2+ , polyamines are known to stabilize the folding of RNA and overall structure. The bacterial ribosome is composed of a small (30S) subunit containing the decoding center and a large (50S) subunit devoted to peptide bond formation. We have previously shown that the small ribosomal subunit of Staphylococcus aureus is sensitive to changes in ionic conditions and polyamines concentration. In particular, its decoding center, where mRNA codons and tRNA anticodons interact, is prone to structural deformations in the absence of spermidine. Here, we report a detailed protocol for the purification of the intact and functional 30S, achieved through specific ionic conditions and the addition of spermidine. Using this protocol, we obtained the cryo-electron microscopy (cryo-EM) structure of the 30S-mRNA complex from S. aureus at 3.6 Å resolution. The 30S-mRNA complex formation was verified by a toeprinting assay. In this article, we also include a description of toeprinting and cryo-EM protocols. The described protocols can be further used to study the process of translation regulation. Graphical abstract.

12.
Nat Commun ; 13(1): 7435, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460643

RESUMEN

Ribosomes translate genetic information into primary structure. During translation, various cofactors transiently bind to the ribosome that undergoes prominent conformational and structural changes. Different translational states of ribosomes have been well characterized in vitro. However, to which extent the known translational states are representative of the native situation inside cells has thus far only been addressed in prokaryotes. Here, we apply cryo-electron tomography to cryo-FIB milled Dictyostelium discoideum cells combined with subtomogram averaging and classification. We obtain an in situ structure that is locally resolved up to 3 Angstrom, the distribution of eukaryotic ribosome translational states, and unique arrangement of rRNA expansion segments. Our work demonstrates the use of in situ structural biology techniques for identifying distinct ribosome states within the cellular environment.


Asunto(s)
Dictyostelium , Eucariontes , Eucariontes/genética , Dictyostelium/genética , Células Eucariotas , Ribosomas , Células Procariotas
13.
Front Mol Biosci ; 8: 738752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869582

RESUMEN

Cryo-electron microscopy is now used as a method of choice in structural biology for studying protein synthesis, a process mediated by the ribosome machinery. In order to achieve high-resolution structures using this approach, one needs to obtain homogeneous and stable samples, which requires optimization of ribosome purification in a species-dependent manner. This is especially critical for the bacterial small ribosomal subunit that tends to be unstable in the absence of ligands. Here, we report a protocol for purification of stable 30 S from the Gram-positive bacterium Staphylococcus aureus and its cryo-EM structures: in presence of spermidine at a resolution ranging between 3.4 and 3.6 Å and in its absence at 5.3 Å. Using biochemical characterization and cryo-EM, we demonstrate the importance of spermidine for stabilization of the 30 S via preserving favorable conformation of the helix 44.

14.
FEBS Lett ; 594(21): 3551-3567, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32852796

RESUMEN

Staphylococcus aureus is a bacterial pathogen and one of the leading causes of healthcare-acquired infections in the world. The growing antibiotic resistance of S. aureus obliges us to search for new drugs and treatments. As the majority of antibiotics target the ribosome, knowledge of its detailed structure is crucial for drug development. Here, we report the cryo-EM reconstruction at 3.2 Å resolution of the S. aureus ribosome with P-site tRNA, messenger RNA, and 10 RNA modification sites previously not assigned or visualized. The resulting model is the most precise and complete high-resolution structure to date of the S. aureus 70S ribosome with functional ligands.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas/química , Ribosomas/ultraestructura , Staphylococcus aureus/química , Staphylococcus aureus/ultraestructura , Ligandos , Modelos Moleculares , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Reproducibilidad de los Resultados , Ribosomas/metabolismo
15.
Nat Commun ; 11(1): 1656, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245971

RESUMEN

For the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit. Here we describe the binding mode of Staphylococcus aureus RsfS to the large ribosomal subunit and present a 3.2 Å resolution cryo-EM reconstruction of the 50S-RsfS complex together with the crystal structure of uL14-RsfS complex solved at 2.3 Å resolution. The understanding of the detailed landscape of RsfS-uL14 interactions within the ribosome shed light on the mechanism of ribosome shutdown in the human pathogen S. aureus and might deliver a novel target for pharmacological drug development and treatment of bacterial infections.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desarrollo de Medicamentos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades Ribosómicas
16.
Nat Commun ; 10(1): 2519, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175275

RESUMEN

The ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data. We elucidate the role of potassium ions in protein synthesis at the three-dimensional level, most notably, in the environment of the ribosome functional decoding and peptidyl transferase centers. Our data expand the fundamental knowledge of the mechanism of ribosome function and structural integrity.


Asunto(s)
Potasio/metabolismo , Ribosomas/ultraestructura , Difracción de Rayos X , Cationes , Microscopía por Crioelectrón , Cristalización , Cristalografía por Rayos X , Escherichia coli , Biosíntesis de Proteínas , Conformación Proteica , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/metabolismo
17.
Biomol NMR Assign ; 13(1): 27-30, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30225569

RESUMEN

Ribosome binding factor A (RbfA) is a 14.9 kDa adaptive protein of cold shock, which is important for bacterial growth at low temperatures. RbfA can bind to the free 30S ribosomal subunit and interacts with the 5'-terminal helix (helix I) of 16S rRNA. RbfA is important for the efficient processing of 16S rRNA and for the maturation (assembly) of 30S ribosomal subunits. Here we report backbone and side chains 1H, 13C and 15N chemical shift assignments of RbfA from Staphylococcus aureus. Analysis of the backbone chemical shifts by TALOS+ suggests that RbfA contains four α-helixes and three ß-strands with α1-ß1-ß2-α2-α3-ß3-α4 topology. Secondary structure of RbfA have KH-domain fold topology with ßααß subunit which is characterized by a helix-kink-helix motif in which the GxxG sequence is replaced by a conserved AxG sequence, where an Ala residue at position 70 forming an interhelical kink. The solution of the structure of this protein factor and its complex with the ribosome by NMR spectroscopy, X-ray diffraction analysis and cryo-electron microscopy will allow further development of highly selective substances for slowing or completely stopping the translation of the pathogenic bacterium S. aureus, which will interfere with the synthesis and isolation of its pathogenicity factors.


Asunto(s)
Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Staphylococcus aureus/química , Secuencia de Aminoácidos , Isótopos de Nitrógeno , Protones
18.
Biomol NMR Assign ; 12(1): 85-89, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28980143

RESUMEN

Staphylococcus aureus: hibernation-promoting factor (SaHPF) is a 22.2 kDa stationary-phase protein that binds to the ribosome and turns it to the inactive form favoring survival under stress. Sequence analysis has shown that this protein is combination of two homolog proteins obtained in Escherichia coli-ribosome hibernation promoting factor (HPF) (11,000 Da) and ribosome modulation factor RMF (6500 Da). Binding site of E. coli HPF on the ribosome have been shown by X-ray study of Thermus thermophilus ribosome complex. Hence, recent studies reported that the interface is markedly different between 100S from S. aureus and E. coli. Cryo-electron microscopy structure of 100S S. aureus ribosomes reveal that the SaHPF-NTD binds to the 30S subunit as observed for shorter variants of HPF in other species and the C-terminal domain (CTD) protrudes out of each ribosome in order to mediate dimerization. SaHPF-NTD binds to the small subunit similarly to its homologs EcHPF, EcYfiA, and a plastid-specific YfiA. Furthermore, upon binding to the small subunit, the SaHPF-NTD occludes several antibiotic binding sites at the A site (hygromycin B, tetracycline), P site (edeine) and E site (pactamycin, kasugamycin). In order to elucidate the structure, dynamics and function of SaHPF-NTD from S. aureus, here we report the backbone and side chain resonance assignments for SaHPF-NTD. Analysis of the backbone chemical shifts by TALOS+ suggests that SaHPF-NTD contains two α-helices and four ß-strands (ß1-α1-ß2-ß3-ß4-α2 topology). Investigating the long-term survival of S. aureus and other bacteria under antibiotic pressure could lead to advances in antibiotherapy.


Asunto(s)
Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Ribosómicas/química , Dominios Proteicos
19.
Biomol NMR Assign ; 12(2): 351-355, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30099718

RESUMEN

Elongation Factor P (EF-P) is a 20.5 kDa protein that provides specialized translation of special stalling amino acid motifs. Proteins with stalling motifs are often involved in various processes, including stress resistance and virulence. Thus it has been shown that the virulent properties of microorganisms can be significantly reduced if the work of EF-P is disrupted. In order to elucidate the structure, dynamics and function of EF-P from Staphylococcus aureus (S. aureus), here we report backbone and side chains 1H, 13C and 15N chemical shift assignments of EF-P. Analysis of the backbone chemical shifts by TALOS+ suggests that EF-P contains 1 α-helix and 13 ß-strands (ß1-ß2-ß3-ß4-ß5-ß6-ß7-α1-ß8-ß9-ß10-ß11-ß12-ß13). The solution of the structure of this protein by NMR and X-ray diffraction analysis, as well as the structure of the ribosome complex by cryo-electron microscopy, will allow further screening of highly selective inhibitors of the translation of the pathogenic bacterium S. aureus. Here we report the almost complete 1H, 13C, 15N backbone and side chain NMR assignment of a 20.5 kDa EF-P.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Factores de Elongación de Péptidos/química , Staphylococcus aureus , Secuencia de Aminoácidos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
20.
Nat Commun ; 7: 10457, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26791911

RESUMEN

Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.


Asunto(s)
Codón/genética , Escherichia coli/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Emparejamiento Base , Secuencia de Bases , Codón/química , Codón/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Código Genético , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Tiouridina/análogos & derivados , Tiouridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA