Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Mol Genet ; 26(R1): R2-R11, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28510639

RESUMEN

While individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP). However, targeted sequencing studies of exons from known IRD genes have resulted in the identification of candidate mutations in only approximately 60% of IRD cases. Given recent advances in the development of gene-based medicines, characterization of IRD patient cohorts for known IRD genes and elucidation of the molecular pathologies of disease in those remaining unresolved cases has become an endeavor of the highest priority. Here, we provide an outline of progress in this area.


Asunto(s)
Degeneración Retiniana/genética , Secuencia Conservada , Exones , Proteínas del Ojo/genética , Humanos , Mutación , Linaje , Distrofias Retinianas/genética , Retinitis Pigmentosa/genética , Análisis de Secuencia de ADN
2.
Hum Mol Genet ; 26(7): 1230-1246, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158775

RESUMEN

Intraocular pressure (IOP) is maintained as a result of the balance between production of aqueous humour (AH) by the ciliary processes and hydrodynamic resistance to its outflow through the conventional outflow pathway comprising the trabecular meshwork (TM) and Schlemm's canal (SC). Elevated IOP, which can be caused by increased resistance to AH outflow, is a major risk factor for open-angle glaucoma. Matrix metalloproteinases (MMPs) contribute to conventional aqueous outflow homeostasis in their capacity to remodel extracellular matrices, which has a direct impact on aqueous outflow resistance and IOP. We observed decreased MMP-3 activity in human glaucomatous AH compared to age-matched normotensive control AH. Treatment with glaucomatous AH resulted in significantly increased transendothelial resistance of SC endothelial and TM cell monolayers and reduced monolayer permeability when compared to control AH, or supplemented treatment with exogenous MMP-3.Intracameral inoculation of AAV-2/9 containing a CMV-driven MMP-3 gene (AAV-MMP-3) into wild type mice resulted in efficient transduction of corneal endothelium and an increase in aqueous concentration and activity of MMP-3. Most importantly, AAV-mediated expression of MMP-3 increased outflow facility and decreased IOP, and controlled expression using an inducible promoter activated by topical administration of doxycycline achieved the same effect. Ultrastructural analysis of MMP-3 treated matrices by transmission electron microscopy revealed remodelling and degradation of core extracellular matrix components. These results indicate that periodic induction, via use of an eye drop, of AAV-mediated secretion of MMP-3 into AH could have therapeutic potential for those cases of glaucoma that are sub-optimally responsive to conventional pressure-reducing medications.


Asunto(s)
Dependovirus/genética , Glaucoma/terapia , Presión Intraocular/genética , Metaloproteinasa 3 de la Matriz/genética , Animales , Humor Acuoso/metabolismo , Modelos Animales de Enfermedad , Endotelio Corneal/metabolismo , Endotelio Corneal/patología , Glaucoma/genética , Glaucoma/patología , Humanos , Metaloproteinasa 3 de la Matriz/uso terapéutico , Ratones , Soluciones Oftálmicas/uso terapéutico
3.
Adv Exp Med Biol ; 801: 783-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664771

RESUMEN

Disease mechanisms associated with retinal disease are of immense complexity, mutations within 45 genes having been implicated, for example, in retinitis pigmentosa, while interplay between genetic, environmental, and demographic factors can lead to diabetic retinopathy, age-related macular degeneration, and glaucoma. In light of such diversity, any therapeutic modality that can be targeted to an early molecular process instrumental in multiple forms of disease, such as oxidative stress, holds much attraction. Here, we provide a brief overview of a selection of compounds displaying antioxidant activity, which have been shown to slow down degeneration of retinal tissues and highlight suggested modes of action.


Asunto(s)
Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/farmacología , Enfermedades de la Retina/tratamiento farmacológico , Animales , Humanos
4.
Adv Exp Med Biol ; 801: 229-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664703

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models.


Asunto(s)
Inflamación/inmunología , Degeneración Macular/inmunología , Drusas del Disco Óptico/inmunología , Retinitis/inmunología , Transducción de Señal/inmunología , Humanos
5.
Adv Exp Med Biol ; 801: 471-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664733

RESUMEN

The first autosomal dominant mutation identified to cause retinitis pigmentosa in the North American population was the substitution of proline to histidine at position 23 of the rhodopsin gene (P23H RHO). Many biochemical studies have demonstrated that P23H mutation induces rhodopsin (RHO) misfolding leading to endoplasmic reticulum stress. Herein, we review current thinking of this topic.


Asunto(s)
Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Rodopsina/genética , Animales , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Genes Dominantes , Humanos
6.
Adv Exp Med Biol ; 801: 409-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664725

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide and while polymorphisms in genes associated with the immune system have been identified as risk factors for disease development, the underlying pathways and mechanisms involved in disease progression have remained unclear. In AMD, localised inflammatory responses related to particulate matter accumulation and subsequent "sterile" inflammation has recently gained considerable interest amongst basic researchers and clinicians alike. Typically, inflammatory responses in the human body are caused as a result of bacterial or viral infection, however in chronic conditions such as AMD, extracellular particulate matter such as drusen can be "sensed" by the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, culminating in the release of the two pro-inflammatory cytokines IL-1ß and IL-18 in the delicate local tissue of the retina. Identification at the molecular level of mediators of the inflammatory response in AMD may yield novel therapeutic approaches to this common and often severe form of blindness. Here, we will describe the role of IL-18 in AMD and other forms of retinal disorders. We will outline some of the key functions of IL-18 as it pertains to maintaining tissue homeostasis in a healthy and degenerating/diseased retina.


Asunto(s)
Inflamasomas/inmunología , Interleucina-18/inmunología , Degeneración Macular/inmunología , Degeneración Retiniana/inmunología , Retinitis/inmunología , Humanos
7.
Hum Mol Genet ; 19(22): 4421-36, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20817636

RESUMEN

Retinitis pigmentosa (RP) is the most prevalent cause of registered visual handicap among working aged populations of developed countries. Up to 40% of autosomal dominant cases of disease are caused by mutations within the rhodopsin, RDS-peripherin and inosine 5'-monophosphate dehydrogenase type 1 (IMPDH1) genes, at least 30 mutations within which give rise to proteins that cause disease pathology by misfolding and aggregation. Given the genetic complexity of this disease, therapies that simultaneously target multiple mutations are of substantial logistic and economic significance. We show here, in a murine model of autosomal dominant RP (RP10) involving expression of an Arg224Pro mutation within the IMPDH1 gene, that treatment with the low-molecular-weight drug, 17-allylamino-17-demethoxygeldanamycin (17-AAG), an ansamycin antibiotic that binds to heat shock protein Hsp90, activating a heat shock response in mammalian cells, protects photoreceptors against degeneration induced by aggregating mutant IMPDH1 protein, systemic delivery of this low-molecular-weight drug to the retina being facilitated by RNA interference-mediated modulation of the inner-blood retina barrier. 17-AAG has an orphan drug status and is in current clinical use for the treatment of non-ocular diseases. These data show that a single low-molecular-weight drug has the potential to suppress a wide range of mutant proteins causing RP.


Asunto(s)
Benzoquinonas/uso terapéutico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/uso terapéutico , Retinitis Pigmentosa/prevención & control , Animales , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Genes Dominantes , Proteínas HSP90 de Choque Térmico/genética , Células HeLa , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Interferencia de ARN , Retina/efectos de los fármacos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Rodopsina/genética , Rodopsina/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(42): 17817-22, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19822744

RESUMEN

Degenerative retinopathies, including age-related macular degeneration, diabetic retinopathy, and hereditary retinal disorders--major causes of world blindness--are potentially treatable by using low-molecular weight neuroprotective, antiapoptotic, or antineovascular drugs. These agents are, however, not in current systemic use owing to, among other factors, their inability to passively diffuse across the microvasculature of the retina because of the presence of the inner blood-retina barrier (iBRB). Moreover, preclinical assessment of the efficacies of new formulations in the treatment of such conditions is similarly compromised. We describe here an experimental process for RNAi-mediated, size-selective, transient, and reversible modulation of the iBRB in mice to molecules up to 800 Da by suppression of transcripts encoding claudin-5, a protein component of the tight junctions of the inner retinal vasculature. MRI produced no evidence indicative of brain or retinal edema, and the process resulted in minimal disturbance of global transcriptional patterns analyzed in neuronal tissue. We show that visual function can be improved in IMPDH1(-/-) mice, a model of autosomal recessive retinitis pigmentosa, and that the rate of photoreceptor cell death can be reduced in a model of light-induced retinal degeneration by systemic drug delivery after reversible barrier opening. These findings provide a platform for high-throughput drug screening in models of retinal degeneration, and they ultimately could result in the development of a novel "humanized" approach to therapy for conditions with little or no current forms of treatment.


Asunto(s)
Barrera Hematorretinal/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Sistemas de Liberación de Medicamentos , Oligopéptidos/administración & dosificación , Animales , Calpaína/antagonistas & inhibidores , Claudina-5 , Inhibidores de Cisteína Proteinasa/administración & dosificación , Modelos Animales de Enfermedad , Electrorretinografía , Guanosina Trifosfato/administración & dosificación , Guanosina Trifosfato/metabolismo , Humanos , IMP Deshidrogenasa/deficiencia , IMP Deshidrogenasa/genética , Imagen por Resonancia Magnética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño/genética , Retina/efectos de los fármacos , Retina/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
9.
Mol Ther Methods Clin Dev ; 20: 86-94, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33376757

RESUMEN

Systemic or localized application of glucocorticoids (GCs) can lead to iatrogenic ocular hypertension, which is a leading cause of secondary open-angle glaucoma and visual impairment. Previous work has shown that dexamethasone increases zonula occludens-1 (ZO-1) protein expression in trabecular meshwork (TM) cells, and that an antisense oligonucleotide inhibitor of ZO-1 can abolish the dexamethasone-induced increase in trans-endothelial flow resistance in cultured Schlemm's canal (SC) endothelial and TM cells. We have previously shown that intracameral inoculation of small interfering RNA (siRNA) targeting SC endothelial cell tight junction components, ZO-1 and tricellulin, increases aqueous humor outflow facility ex vivo in normotensive mice by reversibly opening SC endothelial paracellular pores. In this study, we show that targeted siRNA downregulation of these SC endothelial tight junctions reduces intraocular pressure (IOP) in vivo, with a concomitant increase in conventional outflow facility in a well-characterized chronic steroid-induced mouse model of ocular hypertension, thus representing a potential focused clinical application for this therapy in a sight-threatening scenario.

10.
Hum Mol Genet ; 17(14): 2084-100, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18385099

RESUMEN

Mutations within the inosine 5'-monophosphate dehydrogenase 1 (IMPDH1) gene cause the RP10 form of autosomal dominant retinitis pigmentosa (adRP), an early-onset retinopathy resulting in extensive visual handicap owing to progressive death of photoreceptors. Apart from the prevalence of RP10, estimated to account for 5-10% of cases of adRP in United States and Europe, two observations render this form of RP an attractive target for gene therapy. First, we show that while recombinant adeno-associated viral (AAV)-mediated expression of mutant human IMPDH1 protein in the mouse retina results in an aggressive retinopathy modelling the human counterpart, expression of a normal human IMPDH1 gene under similar conditions has no observable pathological effect on retinal function, indicating that over-expression of a therapeutic replacement gene may be relatively well tolerated. Secondly, complete absence of IMPDH1 protein in mice with a targeted disruption of the gene results in relatively mild retinal dysfunction, suggesting that significant therapeutic benefit may be derived even from the suppression-only component of an RNAi-based gene therapy. We show that AAV-mediated co-expression in the murine retina of a mutant human IMPDH1 gene together with short hairpin RNAs (shRNA) validated in vitro and in vivo, targeting both human and mouse IMPDH1, substantially suppresses the negative pathological effects of mutant IMPDH1, at a point where, in the absence of shRNA, expression of mutant protein in the RP10 model essentially ablates all photoreceptors in transfected areas of the retina. These data strongly suggest that an RNAi-mediated approach to therapy for RP10 holds considerable promise for human subjects.


Asunto(s)
Terapia Genética , IMP Deshidrogenasa/genética , ARN Interferente Pequeño/genética , Retinitis Pigmentosa/terapia , Animales , Secuencia de Bases , Dependovirus/genética , Regulación hacia Abajo , Genes Dominantes , Vectores Genéticos/genética , Células HeLa , Humanos , IMP Deshidrogenasa/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Datos de Secuencia Molecular , Mutación , Interferencia de ARN , ARN Interferente Pequeño/química , Transducción Genética
11.
Adv Exp Med Biol ; 664: 301-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20238029

RESUMEN

The inner Blood-Retina-barrier (iBRB) remains a key element in retarding the development of novel therapeutics for the treatment of many ocular disorders. The iBRB contains tight-junctions (TJ's) which reduce the space between adjacent endothelial cells lining the fine capillaries of the retinal microvasculature to form a selective and regulatable barrier. We have recently shown that in mice, the iBRB can be transiently and size-selectively opened to molecules with molecular weights of up to approximately 1 kDa using an siRNA-mediated approach involving suppression of the tight junction protein, claudin-5. We have systemically delivered siRNA targeting claudin-5 to retinal capillary endothelial cells in mice and through a series of tracer experiments and magnetic-resonance-imaging (MRI), we have shown a transient and size-selective increase in permeability at the iBRB to molecules below 1 kDa. The potential to exploit this specific compromise in iBRB integrity may have far reaching implications for the development of experimental animal models of retinal degenerative disorders, and for enhanced delivery of therapeutic molecules which would normally not traverse the iBRB. Using RNAi-mediated opening of the iBRB, the systemic delivery of low molecular weight therapeutics could in principle, hold real promise as an alternative to repeated intraocular inoculation of compounds. Results demonstrated here in mouse models, should lead to a 'humanized' form of systemic delivery as opposed to the hydrodynamic approach used in our work to date.


Asunto(s)
Barrera Hematorretinal/metabolismo , Oftalmopatías/terapia , Animales , Bencimidazoles/metabolismo , Claudina-5 , Crioultramicrotomía , Extravasación de Materiales Terapéuticos y Diagnósticos , Gadolinio DTPA/metabolismo , Inyecciones , Imagen por Resonancia Magnética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Perfusión , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
12.
Adv Exp Med Biol ; 664: 559-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20238059

RESUMEN

Recombinant adeno-associated viral (rAAV) vectors have recently been widely used for the delivery of therapeutic transgenes in preclinical and clinical studies for inherited retinal degenerative diseases. Interchanging capsid genes between different AAV serotypes has enabled selective delivery of transgene into specific cell type(s) of the retina. The RP10 form of autosomal dominant retinitis pigmentosa (adRP) is caused by missense mutations within the gene encoding inosine 5'-monophosphate dehydrogenase type 1. Here, we report that the use of rAAV2/5 vectors expressing shRNA targeting mutant IMPDH1 prevents photoreceptor degeneration, and preserves synaptic connectivity in a mouse model of RP10.


Asunto(s)
Citoprotección , Modelos Animales de Enfermedad , Células Fotorreceptoras de Vertebrados/patología , Retinitis Pigmentosa/patología , Animales , Dependovirus/genética , Regulación hacia Abajo/genética , Genes Supresores , Células HeLa , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Células Fotorreceptoras de Vertebrados/enzimología , Recombinación Genética/genética , Retinitis Pigmentosa/enzimología , Supresión Genética , Sinapsis/metabolismo
13.
Genes (Basel) ; 11(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261050

RESUMEN

RPE65 isomerase, expressed in the retinal pigmented epithelium (RPE), is an enzymatic component of the retinoid cycle, converting all-trans retinyl ester into 11-cis retinol, and it is essential for vision, because it replenishes the photon capturing 11-cis retinal. To date, almost 200 loss-of-function mutations have been identified within the RPE65 gene causing inherited retinal dystrophies, most notably Leber congenital amaurosis (LCA) and autosomal recessive retinitis pigmentosa (arRP), which are both severe and early onset disease entities. We previously reported a mutation, D477G, co-segregating with the disease in a late-onset form of autosomal dominant RP (adRP) with choroidal involvement; uniquely, it is the only RPE65 variant to be described with a dominant component. Families or individuals with this variant have been encountered in five countries, and a number of subsequent studies have been reported in which the molecular biological and physiological properties of the variant have been studied in further detail, including observations of possible novel functions in addition to reduced RPE65 enzymatic activity. With regard to the latter, a human phase 1b proof-of-concept study has recently been reported in which aspects of remaining vision were improved for up to one year in four of five patients with advanced disease receiving a single one-week oral dose of 9-cis retinaldehyde, which is the first report showing efficacy and safety of an oral therapy for a dominant form of RP. Here, we review data accrued from published studies investigating molecular mechanisms of this unique variant and include hitherto unpublished material on the clinical spectrum of disease encountered in patients with the D477G variant, which, in many cases bears striking similarities to choroideremia.


Asunto(s)
Sustitución de Aminoácidos , Genes Dominantes , Mutación Missense , Mutación Puntual , Retinitis Pigmentosa/genética , cis-trans-Isomerasas/genética , Edad de Inicio , Animales , Coroideremia , Ensayos Clínicos Fase I como Asunto , ADN Complementario/administración & dosificación , ADN Complementario/genética , Terapia de Reemplazo Enzimático , Femenino , Técnicas de Sustitución del Gen , Terapia Genética , Vectores Genéticos/uso terapéutico , Humanos , Amaurosis Congénita de Leber/enzimología , Amaurosis Congénita de Leber/genética , Masculino , Ratones , Linaje , Prueba de Estudio Conceptual , Isoformas de Proteínas/genética , Retinaldehído/uso terapéutico , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/terapia , cis-trans-Isomerasas/deficiencia , cis-trans-Isomerasas/fisiología , cis-trans-Isomerasas/uso terapéutico
14.
BMJ Open Ophthalmol ; 5(1): e000462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426524

RESUMEN

OBJECTIVES: No therapeutic interventions are currently available for autosomal dominant retinitis pigmentosa (adRP). An RPE65 Asp477Gly transition associates with late-onset adRP, reduced RPE65 enzymatic activity being one feature associated with this dominant variant. Our objective: to assess whether in a proof-of-concept study, oral synthetic 9 cis-retinyl acetate therapy improves vision in such advanced disease. METHODS AND ANALYSIS: A phase 1b proof-of-concept clinical trial was conducted involving five patients with advanced disease, aged 41-68 years. Goldmann visual fields (GVF) and visual acuities (VA) were assessed for 6-12 months after 7-day treatment, patients receiving consecutive oral doses (40 mg/m2) of 9-cis-retinyl acetate, a synthetic retinoid replacement. RESULTS: Pathological effects of D477G variant were preliminarily assessed by electroretinography in mice expressing AAV-delivered D477G RPE65, by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme- thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays on RPE viability and enzyme activity in cultured cells. In addition to a mild dominant effect reflected in reduced electroretinographics in mice, and reduced cellular function in vitro, D477G exhibited reduced enzymatic RPE65 activity in vitro. In patients, significant improvements were observed in GVF from baseline ranging from 70% to 200% in three of five subjects aged 67-68 years, with largest improvements at 7-10 months. Of two GVF non-responders, one had significant visual acuity improvement (5-15 letters) from baseline after 6 months. CONCLUSION: Families with D477G variant have been identified in Ireland, the UK, France, the USA and Canada. Effects of single 7-day oral retinoid supplementation lasted at least 6 months, possibly giving visual benefit throughout remaining life in patients with advanced disease, where gene therapy is unlikely to prove beneficial.

15.
J Gene Med ; 10(8): 930-47, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18509865

RESUMEN

BACKGROUND: The blood-brain barrier (BBB) contains tight junctions (TJs) which reduce the space between adjacent endothelial cells lining the fine capillaries of the microvasculature of the brain to form a selective and regulatable barrier. METHODS: Using a hydrodynamic approach, we delivered siRNA targeting the TJ protein claudin-5 to the endothelial cells of the BBB in mice. RESULTS: We have shown a significant decrease in claudin-5 mRNA levels 24 and 48 hours post-delivery of siRNA, with levels of protein expression decreasing up to 48 hours post-injection compared to uninjected, phosphate-buffered saline (PBS)-injected and non-targeting siRNA-injected mice. We observed increased permeability at the BBB to molecules up to 742 Da, but not 4400 Da, using tracer molecule perfusion and MRI analysis. To illustrate the functional efficacy of size-selective and transient barrier opening, we have shown that enhanced delivery of the small neuropeptide thyrotropin-releasing hormone (TRH) (MW 360 Da) to the brains of mice 48 hours post-injection of siRNA targeting claudin-5 significantly modifies behavioural output. CONCLUSIONS: These data demonstrate that it is now possible to transiently and size-selectively open the BBB in mice, allowing in principle the delivery of a wide range of agents for the establishment and treatment of experimental mouse models of neurodegenerative, neuropsychiatric and malignant diseases.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Proteínas de la Membrana/metabolismo , Interferencia de ARN , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Permeabilidad Capilar/fisiología , Claudina-5 , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Radiografía , Uniones Estrechas/metabolismo , Factores de Tiempo
19.
Sci Rep ; 7: 40717, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091584

RESUMEN

The juxtacanalicular connective tissue of the trabecular meshwork together with inner wall endothelium of Schlemm's canal (SC) provide the bulk of resistance to aqueous outflow from the anterior chamber. Endothelial cells lining SC elaborate tight junctions (TJs), down-regulation of which may widen paracellular spaces between cells, allowing greater fluid outflow. We observed significant increase in paracellular permeability following siRNA-mediated suppression of TJ transcripts, claudin-11, zonula-occludens-1 (ZO-1) and tricellulin in human SC endothelial monolayers. In mice claudin-11 was not detected, but intracameral injection of siRNAs targeting ZO-1 and tricellulin increased outflow facility significantly. Structural qualitative and quantitative analysis of SC inner wall by transmission electron microscopy revealed significantly more open clefts between endothelial cells treated with targeting, as opposed to non-targeting siRNA. These data substantiate the concept that the continuity of SC endothelium is an important determinant of outflow resistance, and suggest that SC endothelial TJs represent a specific target for enhancement of aqueous movement through the conventional outflow system.


Asunto(s)
Cámara Anterior/fisiología , Humor Acuoso/metabolismo , Endotelio/metabolismo , Uniones Estrechas/metabolismo , Animales , Biomarcadores , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Endotelio/ultraestructura , Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Permeabilidad , Primates , Interferencia de ARN , ARN Interferente Pequeño/genética , Uniones Estrechas/ultraestructura
20.
Hum Mutat ; 27(3): 260-8, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16419083

RESUMEN

Extensive mutational heterogeneity presents a significant barrier to the development of therapeutics for RDS-peripherin-linked autosomal-dominant retinitis pigmentosa (RP), for which more than 50 disease-related mutations have been identified to date. Mutation-independent suppression, using RNA interference (RNAi), together with simultaneous expression of a replacement rds gene (r-rds, which has been altered to escape suppression but nevertheless encodes wild-type protein) has been explored in COS-7 cells and mouse retinal explants. The efficacy of small interfering and short hairpin RNAs (si/shRNAs) silencing mouse rds, and the function of r-rds (containing degenerate substitutions in the RNAi target sequence) were analyzed at transcript (RT-PCR) and protein (ELISA) levels in COS-7 cells. "Dual-" and "triple-expression" constructs carrying the shRNA suppressor and the marker EGFP with or without the r-rds cassette were electroporated in vitro into retinal explants from 1-day-old pups. The retinae were dissociated at day 14, and transduced cells were FACS-sorted using the coexpressed EGFP marker and analyzed by RT-PCR. si/shRNAs decreased rds mRNA and protein expression by up to 82%, while r-rds was protected from suppression in COS-7 cells. Similarly, efficient RNAi-mediated suppression of endogenous rds was detected in retinal explants, while concomitant rescue of r-rds was also achieved. These data validate the concept of RNAi-based suppression coupled with replacement technology for the development of therapies targeting RDS-linked autosomal-dominant RP, and suggest that such approaches could potentially be used for other autosomal-dominant diseases with similarly extensive intragenic heterogeneity.


Asunto(s)
Análisis Mutacional de ADN/métodos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/fisiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Interferencia de ARN , Retina/metabolismo , Retinitis Pigmentosa/genética , Animales , Células COS , Separación Celular , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Silenciador del Gen , Ratones , Periferinas , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA