Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Clin Anat ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556919

RESUMEN

TA2Viewer is an open-access, web-based application and database for browsing anatomical terms and associated medical information on a computer or mobile device (https://ta2viewer.openanatomy.org/). It incorporates the official digital version of the second edition of Terminologia Anatomica (TA2) as published by the Federative International Programme for Anatomical Terminology (FIPAT), and adopted by the International Federation of Associations of Anatomists (IFAA) and other associations. It provides a dynamic and interactive view of the Latin and English nomenclatures. The organizational hierarchy of the terminology can be navigated by using a scrollable, expandable, and collapsible structured listing. Interactive search includes the official TA2 terms, synonyms, and related terms. TA2Viewer also uses TA2 term information to provide convenient access to other online resources, including Google web and image searches, PubMed, and Radiopaedia. Using cross-references from Wikidata, which were provided by the Wikipedia community, TA2Viewer offers links to Wikipedia, UBERON, UMLS, FMA, MeSH, NeuroNames, the public domain 20th edition of Gray's Anatomy, and other data sources. In addition, it can optionally use unofficial synonyms from Wikidata to provide multilingual term searches in hundreds of languages. By leveraging TA2, TA2Viewer provides free access to a curated anatomical nomenclature and serves as an index of online anatomical knowledge.

2.
Hum Brain Mapp ; 44(17): 6055-6073, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792280

RESUMEN

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/cirugía
3.
Cerebellum ; 22(2): 249-260, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286708

RESUMEN

The cerebellum is ontogenetically one of the first structures to develop in the central nervous system; nevertheless, it has been only recently reconsidered for its significant neurobiological, functional, and clinical relevance in humans. Thus, it has been a relatively under-studied compared to the cerebrum. Currently, non-invasive imaging modalities can barely reach the necessary resolution to unfold its entire, convoluted surface, while only histological analyses can reveal local information at the micrometer scale. Herein, we used the BigBrain dataset to generate area and point-wise thickness measurements for all layers of the cerebellar cortex and for each lobule in particular. We found that the overall surface area of the cerebellar granular layer (including Purkinje cells) was 1,732 cm2 and the molecular layer was 1,945 cm2. The average thickness of the granular layer is 0.88 mm (± 0.83) and that of the molecular layer is 0.32 mm (± 0.08). The cerebellum (both granular and molecular layers) is thicker at the depth of the sulci and thinner at the crowns of the gyri. Globally, the granular layer is thicker in the lateral-posterior-inferior region than the medial-superior regions. The characterization of individual layers in the cerebellum achieved herein represents a stepping-stone for investigations interrelating structural and functional connectivity with cerebellar architectonics using neuroimaging, which is a matter of considerable relevance in basic and clinical neuroscience. Furthermore, these data provide templates for the construction of cerebellar topographic maps and the precise localization of structural and functional alterations in diseases affecting the cerebellum.


Asunto(s)
Corteza Cerebelosa , Cerebelo , Humanos , Corteza Cerebelosa/patología , Cerebelo/fisiología , Células de Purkinje
4.
Radiographics ; 43(12): e230180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999984

RESUMEN

The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.


Asunto(s)
Inteligencia Artificial , Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Reproducibilidad de los Resultados , Diagnóstico por Imagen , Multiómica , Neoplasias/diagnóstico por imagen
5.
Clin Anat ; 36(4): 641-650, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36648069

RESUMEN

Acupuncture point names written in Chinese Han characters often provide clinically useful information in both their literal and figurative meanings about location and therapeutic use. The World Health Organization (WHO) standard acupuncture nomenclature includes these names in Han characters in an unusual array that includes both "original" forms and, in parentheses, simplified forms. Construction of a multilingual table of acupuncture point names during development of a database revealed that the assumption that the "original" form in the WHO nomenclature was the traditional Chinese character was frequently false. The Han character forms in the pdf of the 2009 reprint of WHO Standard Acupuncture Point Locations were carefully compared with Han characters used in traditional and simplified Chinese, Japanese and Korean writing systems. This work utilized three online tools: UnicodePlus, Unihan Database Lookup, and Wiktionary. Only 48% of the "original" character forms were traditional Chinese characters. The Unicode number was correct in 99%, but in most cases the East Asian font used was not a traditional Chinese one. The issue about Han character forms was also found in all earlier versions of the WHO standard acupuncture nomenclature. Other detected problems included the use of wrong characters for an "original" character form in one name and for a simplified character form in another name. The WHO standard acupuncture nomenclature should be revised with a focus on accuracy in the usage of Han characters.


Asunto(s)
Puntos de Acupuntura , Lenguaje , Humanos , Terapia por Acupuntura , Multilingüismo , Terminología como Asunto
6.
Hum Brain Mapp ; 43(17): 5310-5325, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35822593

RESUMEN

White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Leucoaraiosis , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Cognición , Imagen por Resonancia Magnética
7.
Hum Brain Mapp ; 42(12): 3887-3904, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33978265

RESUMEN

The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.


Asunto(s)
Imagen de Difusión Tensora/métodos , Cuerpos Geniculados/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Quiasma Óptico/diagnóstico por imagen , Nervio Óptico/diagnóstico por imagen , Tracto Óptico/diagnóstico por imagen , Retina/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Adulto Joven
8.
Neuroimage ; 220: 117063, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32574805

RESUMEN

Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identification of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability, time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50 subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual ROI placement for TGN selection and hence yields a higher successful TGN identification rate.


Asunto(s)
Conectoma/métodos , Imagen de Difusión Tensora/métodos , Nervio Trigémino/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Bases de Datos Factuales , Humanos
10.
Neurocomputing (Amst) ; 177: 75-88, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-27688597

RESUMEN

Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.

12.
Alzheimers Dement ; 11(5): 485-493.e2, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25035154

RESUMEN

BACKGROUND: Brain atrophy in subjects with mild cognitive impairment (MCI) introduces partial volume effects, limiting the sensitivity of diffusion tensor imaging to white matter microstructural degeneration. Appropriate correction isolates microstructural effects in MCI that might be precursors of Alzheimer's disease (AD). METHODS: Forty-eight participants (18 MCI, 15 AD, and 15 healthy controls) had magnetic resonance imaging scans and clinical evaluations at baseline and follow-up after 36 months. Ten MCI subjects were diagnosed with AD at follow-up and eight remained MCI. Free-water (FW) corrected measures on the white matter skeleton were compared between groups. RESULTS: FW corrected radial diffusivity, but not uncorrected radial diffusivity, was increased across the brain of the converted group compared with the nonconverted group (P < .05). The extent of increases was similar to that found comparing AD with controls. CONCLUSION: Partial volume elimination reveals microstructural alterations preceding dementia. These alterations may prove to be an effective and feasible early biomarker of AD.


Asunto(s)
Demencia/etiología , Degeneración Nerviosa/complicaciones , Fibras Nerviosas Mielínicas/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Anisotropía , Disfunción Cognitiva/complicaciones , Imagen de Difusión Tensora , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Degeneración Nerviosa/patología , Pruebas Neuropsicológicas
13.
Am J Respir Crit Care Med ; 188(2): 231-9, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23656466

RESUMEN

RATIONALE: Angiographic investigation suggests that pulmonary vascular remodeling in smokers is characterized by distal pruning of the blood vessels. OBJECTIVES: Using volumetric computed tomography scans of the chest we sought to quantitatively evaluate this process and assess its clinical associations. METHODS: Pulmonary vessels were automatically identified, segmented, and measured. Total blood vessel volume (TBV) and the aggregate vessel volume for vessels less than 5 mm(2) (BV5) were calculated for all lobes. The lobe-specific BV5 measures were normalized to the TBV of that lobe and the nonvascular tissue volume (BV5/T(issue)V) to calculate lobe-specific BV5/TBV and BV5/T(issue)V ratios. Densitometric measures of emphysema were obtained using a Hounsfield unit threshold of -950 (%LAA-950). Measures of chronic obstructive pulmonary disease severity included single breath measures of diffusing capacity of carbon monoxide, oxygen saturation, the 6-minute-walk distance, St George's Respiratory Questionnaire total score (SGRQ), and the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index. MEASUREMENTS AND MAIN RESULTS: The %LAA-950 was inversely related to all calculated vascular ratios. In multivariate models including age, sex, and %LAA-950, lobe-specific measurements of BV5/TBV were directly related to resting oxygen saturation and inversely associated with both the SGRQ and BODE scores. In similar multivariate adjustment lobe-specific BV5/T(issue)V ratios were inversely related to resting oxygen saturation, diffusing capacity of carbon monoxide, 6-minute-walk distance, and directly related to the SGRQ and BODE. CONCLUSIONS: Smoking-related chronic obstructive pulmonary disease is characterized by distal pruning of the small blood vessels (<5 mm(2)) and loss of tissue in excess of the vasculature. The magnitude of these changes predicts the clinical severity of disease.


Asunto(s)
Vasos Sanguíneos/patología , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Fumar/patología , Tomografía Computarizada por Rayos X , Anciano , Angiografía , Índice de Masa Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Capacidad de Difusión Pulmonar , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X/métodos
14.
Res Sq ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746269

RESUMEN

Rapid advances in medical imaging Artificial Intelligence (AI) offer unprecedented opportunities for automatic analysis and extraction of data from large imaging collections. Computational demands of such modern AI tools may be difficult to satisfy with the capabilities available on premises. Cloud computing offers the promise of economical access and extreme scalability. Few studies examine the price/performance tradeoffs of using the cloud, in particular for medical image analysis tasks. We investigate the use of cloud-provisioned compute resources for AI-based curation of the National Lung Screening Trial (NLST) Computed Tomography (CT) images available from the National Cancer Institute (NCI) Imaging Data Commons (IDC). We evaluated NCI Cancer Research Data Commons (CRDC) Cloud Resources - Terra (FireCloud) and Seven Bridges-Cancer Genomics Cloud (SB-CGC) platforms - to perform automatic image segmentation with TotalSegmentator and pyradiomics feature extraction for a large cohort containing >126,000 CT volumes from >26,000 patients. Utilizing >21,000 Virtual Machines (VMs) over the course of the computation we completed analysis in under 9 hours, as compared to the estimated 522 days that would be needed on a single workstation. The total cost of utilizing the cloud for this analysis was $1,011.05. Our contributions include: 1) an evaluation of the numerous tradeoffs towards optimizing the use of cloud resources for large-scale image analysis; 2) CloudSegmentator, an open source reproducible implementation of the developed workflows, which can be reused and extended; 3) practical recommendations for utilizing the cloud for large-scale medical image computing tasks. We also share the results of the analysis: the total of 9,565,554 segmentations of the anatomic structures and the accompanying radiomics features in IDC as of release v18.

15.
Sci Data ; 11(1): 25, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177130

RESUMEN

Public imaging datasets are critical for the development and evaluation of automated tools in cancer imaging. Unfortunately, many do not include annotations or image-derived features, complicating downstream analysis. Artificial intelligence-based annotation tools have been shown to achieve acceptable performance and can be used to automatically annotate large datasets. As part of the effort to enrich public data available within NCI Imaging Data Commons (IDC), here we introduce AI-generated annotations for two collections containing computed tomography images of the chest, NSCLC-Radiomics, and a subset of the National Lung Screening Trial. Using publicly available AI algorithms, we derived volumetric annotations of thoracic organs-at-risk, their corresponding radiomics features, and slice-level annotations of anatomical landmarks and regions. The resulting annotations are publicly available within IDC, where the DICOM format is used to harmonize the data and achieve FAIR (Findable, Accessible, Interoperable, Reusable) data principles. The annotations are accompanied by cloud-enabled notebooks demonstrating their use. This study reinforces the need for large, publicly accessible curated datasets and demonstrates how AI can aid in cancer imaging.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Inteligencia Artificial , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X
16.
Comput Med Imaging Graph ; 111: 102312, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38141568

RESUMEN

Accurate lymph node size estimation is critical for staging cancer patients, initial therapeutic management, and assessing response to therapy. Current standard practice for quantifying lymph node size is based on a variety of criteria that use uni-directional or bi-directional measurements. Segmentation in 3D can provide more accurate evaluations of the lymph node size. Fully convolutional neural networks (FCNs) have achieved state-of-the-art results in segmentation for numerous medical imaging applications, including lymph node segmentation. Adoption of deep learning segmentation models in clinical trials often faces numerous challenges. These include lack of pixel-level ground truth annotations for training, generalizability of the models on unseen test domains due to the heterogeneity of test cases and variation of imaging parameters. In this paper, we studied and evaluated the performance of lymph node segmentation models on a dataset that was completely independent of the one used to create the models. We analyzed the generalizability of the models in the face of a heterogeneous dataset and assessed the potential effects of different disease conditions and imaging parameters. Furthermore, we systematically compared fully-supervised and weakly-supervised methods in this context. We evaluated the proposed methods using an independent dataset comprising 806 mediastinal lymph nodes from 540 unique patients. The results show that performance achieved on the independent test set is comparable to that on the training set. Furthermore, neither the underlying disease nor the heterogeneous imaging parameters impacted the performance of the models. Finally, the results indicate that our weakly-supervised method attains 90%- 91% of the performance achieved by the fully supervised training.


Asunto(s)
Imagenología Tridimensional , Redes Neurales de la Computación , Humanos , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Ganglios Linfáticos/diagnóstico por imagen , Estadificación de Neoplasias , Procesamiento de Imagen Asistido por Computador/métodos
17.
Front Psychiatry ; 15: 1337888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590789

RESUMEN

Current views on immunity support the idea that immunity extends beyond defense functions and is tightly intertwined with several other fields of biology such as virology, microbiology, physiology and ecology. It is also critical for our understanding of autoimmunity and cancer, two topics of great biological relevance and for critical public health considerations such as disease prevention and treatment. Central to this review, the immune system is known to interact intimately with the nervous system and has been recently hypothesized to be involved not only in autonomic and limbic bio-behaviors but also in cognitive function. Herein we review the structural architecture of the brain network involved in immune response. Furthermore, we elaborate upon the implications of inflammatory processes affecting brain-immune interactions as reported recently in pathological conditions due to SARS-Cov-2 virus infection, namely in acute and post-acute COVID-19. Moreover, we discuss how current neuroimaging techniques combined with ad hoc clinical autopsies and histopathological analyses could critically affect the validity of clinical translation in studies of human brain-immune interactions using neuroimaging. Advances in our understanding of brain-immune interactions are expected to translate into novel therapeutic avenues in a vast array of domains including cancer, autoimmune diseases or viral infections such as in acute and post-acute or Long COVID-19.

18.
J Thorac Dis ; 16(2): 1009-1020, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38505008

RESUMEN

Background: The global coronavirus disease 2019 (COVID-19) pandemic has posed substantial challenges for healthcare systems, notably the increased demand for chest computed tomography (CT) scans, which lack automated analysis. Our study addresses this by utilizing artificial intelligence-supported automated computer analysis to investigate lung involvement distribution and extent in COVID-19 patients. Additionally, we explore the association between lung involvement and intensive care unit (ICU) admission, while also comparing computer analysis performance with expert radiologists' assessments. Methods: A total of 81 patients from an open-source COVID database with confirmed COVID-19 infection were included in the study. Three patients were excluded. Lung involvement was assessed in 78 patients using CT scans, and the extent of infiltration and collapse was quantified across various lung lobes and regions. The associations between lung involvement and ICU admission were analysed. Additionally, the computer analysis of COVID-19 involvement was compared against a human rating provided by radiological experts. Results: The results showed a higher degree of infiltration and collapse in the lower lobes compared to the upper lobes (P<0.05). No significant difference was detected in the COVID-19-related involvement of the left and right lower lobes. The right middle lobe demonstrated lower involvement compared to the right lower lobes (P<0.05). When examining the regions, significantly more COVID-19 involvement was found when comparing the posterior vs. the anterior halves and the lower vs. the upper half of the lungs. Patients, who required ICU admission during their treatment exhibited significantly higher COVID-19 involvement in their lung parenchyma according to computer analysis, compared to patients who remained in general wards. Patients with more than 40% COVID-19 involvement were almost exclusively treated in intensive care. A high correlation was observed between computer detection of COVID-19 affections and the rating by radiological experts. Conclusions: The findings suggest that the extent of lung involvement, particularly in the lower lobes, dorsal lungs, and lower half of the lungs, may be associated with the need for ICU admission in patients with COVID-19. Computer analysis showed a high correlation with expert rating, highlighting its potential utility in clinical settings for assessing lung involvement. This information may help guide clinical decision-making and resource allocation during ongoing or future pandemics. Further studies with larger sample sizes are warranted to validate these findings.

19.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260369

RESUMEN

The retinogeniculate visual pathway (RGVP) is responsible for carrying visual information from the retina to the lateral geniculate nucleus. Identification and visualization of the RGVP are important in studying the anatomy of the visual system and can inform the treatment of related brain diseases. Diffusion MRI (dMRI) tractography is an advanced imaging method that uniquely enables in vivo mapping of the 3D trajectory of the RGVP. Currently, identification of the RGVP from tractography data relies on expert (manual) selection of tractography streamlines, which is time-consuming, has high clinical and expert labor costs, and is affected by inter-observer variability. In this paper, we present a novel deep learning framework, DeepRGVP , to enable fast and accurate identification of the RGVP from dMRI tractography data. We design a novel microstructure-informed supervised contrastive learning method that leverages both streamline label and tissue microstructure information to determine positive and negative pairs. We propose a simple and successful streamline-level data augmentation method to address highly imbalanced training data, where the number of RGVP streamlines is much lower than that of non-RGVP streamlines. We perform comparisons with several state-of-the-art deep learning methods that were designed for tractography parcellation, and we show superior RGVP identification results using DeepRGVP. In addition, we demonstrate a good generalizability of DeepRGVP to dMRI tractography data from neurosurgical patients with pituitary tumors and we show DeepRGVP can successfully identify RGVPs despite the effect of lesions affecting the RGVPs. Overall, our study shows the high potential of using deep learning to automatically identify the RGVP.

20.
Cancer Res ; 84(9): 1388-1395, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488507

RESUMEN

Since 2014, the NCI has launched a series of data commons as part of the Cancer Research Data Commons (CRDC) ecosystem housing genomic, proteomic, imaging, and clinical data to support cancer research and promote data sharing of NCI-funded studies. This review describes each data commons (Genomic Data Commons, Proteomic Data Commons, Integrated Canine Data Commons, Cancer Data Service, Imaging Data Commons, and Clinical and Translational Data Commons), including their unique and shared features, accomplishments, and challenges. Also discussed is how the CRDC data commons implement Findable, Accessible, Interoperable, Reusable (FAIR) principles and promote data sharing in support of the new NIH Data Management and Sharing Policy. See related articles by Brady et al., p. 1384, Pot et al., p. 1396, and Kim et al., p. 1404.


Asunto(s)
Difusión de la Información , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/metabolismo , Difusión de la Información/métodos , Investigación Biomédica , Genómica/métodos , Animales , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA